tìm giá trị nguyên của x để biểu thức M=5-x/x-2 đạt GTLN
tìm giá trị nguyên của x để biểu thức m=5-x/5-2x đạt gtln
Cho biểu thức \(M=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\), tìm giá trị nguyên của x để biểu thức M đạt giá trị nguyên.
Lời giải:
$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$
Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$
Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$
$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)
Bài 1:Tìm giá trị nguyên của x để biểu thức A = \(\frac{4x-3}{2x+1}\)có giá trị là số nguyên
Bài 2: Tìm giá trị nguyên của x để biểu thức A = \(\frac{3}{4-x}\)đạt giá trị lớn nhất.Tìm GTLN đó
Bài 3: Tìm giá trị nguyên x để biểu thức B = \(\frac{7-x}{4-x}\)Đạt GTLN.Tìm GTLN đó
lưu ý các bn nào giải đc bài nào thì viết ra ko nhất thiết là phải cả 3 bài nhưng nếu làm cả 3 bài mk tick cho 3 cái(dùng nick phụ tick nữa)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Cho biểu thức A=7x-8/2x-3 với x khác 0 . Tìm các giá trị nguyên của x để biểu thức A đạt GTLN . Tìm GTLN đó.
Giúp mk với ạ ! * Cảm ơn*
Ta có: \(A=\frac{7x-8}{2x-3}=\frac{1}{2}.\frac{14x-16}{2x-3}=\frac{1}{2}.\frac{14x-21+5}{2x-3}=\frac{1}{2}.\frac{7\left(2x-3\right)+5}{2x-3}\)\(=\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\)
Để A đạt GTLN thì \(\frac{1}{2}\left(7+\frac{5}{2x-3}\right)\) lớn nhất
\(\Rightarrow7+\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow\frac{5}{2x-3}\) lớn nhất
\(\Rightarrow2x-3\) nhỏ nhất hay x nhỏ nhất và x > 0
Vì \(x\inℤ\) nên \(2x-3\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow2x\in\left\{4;8\right\}\)
\(\Rightarrow x\in\left\{2;4\right\}\)
Mà x nhỏ nhất và x > 0 nên x = 2
Thay x = 2 vào A ta được: \(A=\frac{1}{2}.\left(7+\frac{5}{2.2-3}\right)=\frac{1}{2}.12=6\)
Vậy MaxA = 6 tại x = 2.
Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt GTLN. Tìm giá trị đó
Cho biểu thức \(A=\frac{2006-x}{6-x}\).Tìm giá trị nguyên của x để A đạt GTLN
\(A=\frac{2006-x}{6-x}=\frac{6+2000-x}{6-x}=\frac{\left(6-x\right)+2000}{6-x}=\frac{6-x}{6-x}+\frac{2000}{6-x}=1+\frac{2000}{6-x}\)
A lớn nhất <=> \(\frac{2000}{6-x}\) lớn nhất <=> 6-x > 0 và nhỏ nhất <=>6-x=1<=>x=5
Thay x=5 vào A,ta đc:
\(A=1+\frac{2000}{6-5}=1+2000=2001\)
Vậy tại x=5 thì A có GTLN là 2001
\(A=\frac{2006-x}{6-x}=\frac{6+2000-x}{6-x}=\frac{\left(6-x\right)+2000}{6-x}=1+\frac{2000}{6-x}\)
A lớn nhất=>\(\frac{2000}{6-x}\)lớn nhất=>6-x nhỏ nhất=>x lớn nhất
TH1:6-x<0=>x>6=>ko có giá trị x lớn nhất thỏa mãn x>6
TH2:6-x>0=>x<6=>x=5
Vậy x=5 thì GTLN của \(A=\frac{2006-5}{6-5}=\frac{2001}{1}=2001\)
Bài 1:Tìm số nguyên x để 5/x+3 đạt giá trị lớn nhất
Bài 2:Tìm số nguyên x để biểu thức A=x-13/x+3 có giá trị nhỏ nhất
Bài 3:Tìm số nguyên x để biểu thức B=7-x/x-5 đạt giá trị lớn nhất
giúp mình với.Mình cảm ơn các bạn
Toán lớp 6
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
tìm giá nguyên của x để biểu thức A đạt giá trị nguyên bt A=(x-5)^2