1 + ( 1/2 * 1/3 * 1/4 * 1/5 ............ 1/2003 * 1/2004 )
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
Tìm A =(2004+2003/2+2002/3+...+1/2004) : ( 1/2+1/3+1/4+1/5+...+1/2005)
Đặt B = 2004+2003/2+2002/3+...+1/2004 B có 2004 phân số tách số 2004 = 1+1+1+...+1(2004 số 1) ghép 2004 số 1 vào từng nhóm như sau: B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1 B = 2005/2+2005/3+......+2005/2004+2005/2005 B = 2005x(1/2+1/3+....+1/2004+1/2005) Vậy A = 2005
Tìm A =(2004+2003/2+2002/3+...+1/2004) : ( 1/2+1/3+1/4+1/5+...+1/2005)
Đặt B = 2004+2003/2+2002/3+...+1/2004
B có 2004 phân số
tách số 2004 = 1+1+1+...+1(2004 số 1)
ghép 2004 số 1 vào từng nhóm như sau:
B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1
B = 2005/2+2005/3+......+2005/2004+2005/2005
B = 2005x(1/2+1/3+....+1/2004+1/2005)
Vậy A = 2005
[(1/2)+(1/3)+(1/4)+(1/5)+...+(1/2005)]/[(2004/1)+(2003/2)+(2002/3)+...+(1/2004)]
ta có \(2004+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(=\left(1+\frac{2003}{2}\right)+\left(1+\frac{2002}{3}\right)...\left(1+\frac{1}{2004}\right)+1\)
\(=\frac{2005}{2}+\frac{2005}{3}+...+\frac{2005}{2004}+\frac{2005}{2005}\)
\(=2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2005}}{\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}}{2005\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}+\frac{1}{2005}\right)}\)
\(=\frac{1}{2005}\)
P=1/2003+1/2004-1/2004 - 2/2002+2/2003-2/2004
5/2003+5/2004-5/2005 3/2002+3/2003-3/2004
[(1+1/3+1/5+...+1/2003)-(1/2+1/4+...+1/2004)]:(1/1001+1/1002+...+1/2004)
bài 1 : (4đ) 1) Tính : A = 1 phần 2003 + 1 phần 2004 - 1 phần 2005 : 5 phần 2003 + 5 phần 2004 - 5 phần 2005 - ( qua phân số khác rồi nhé ) 2/2002 + 2/2003 - 2/2004 : 3/2002 + 3/2003 - 3/2004 2) Cho B = 1/3+1/3 mũ 2 + 1/3 mũ 3 + 1/3 mũ 4 + ... +1/3 mũ 2015 + 1/3 mũ 2016 . Chứng minh ràng B<1/2
a) 1 - 2 - 3 + 4 +5 - 6 - 7 + ..... + 2001 - 2002 -2003 + 2004
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 2001 + 2002 - 2003 - 2004
a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)
\(=0+0+...+0=0\)
b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right)\cdot501=\left(-2004\right)\)
bài 1 : (4đ) 1) Tính : A = 1 phần 2003 + 1 phần 2004 - 1 phần 2005 : 5 phần 2003 + 5 phần 2004 - 5 phần 2005 - 2/2002 + 2/2003 - 2/2004 : 3/2002 + 3/2003 - 3/2004 2) Cho B = 1/3+1/3 mũ 2 + 1/3 mũ 3 + 1/3 mũ 4 + ... +1/3 mũ 2015 + 1/3 mũ 2016 . Chứng minh ràng B<1/2
nguyên một hàng mk đọc ko hỉu????????????
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203