Tính
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{47.48.49.50}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+......+\frac{1}{47.48.49.50}\)
bằng mấy nhỉ
F=\(\frac{1}{1.2.3.4}\)+\(\frac{1}{2.3.4.5}\)+\(\frac{1}{3.4.5.6}\)+...+\(\frac{1}{47.48.49.50}\)
F= \(\frac{1}{1.2.3}\)- \(\frac{1}{2.3.4}\)+ \(\frac{1}{2.3.4}\)- \(\frac{1}{3.4.5}\)+....+\(\frac{1}{47.48.49}\)- \(\frac{1}{48.49.50}\)
F=\(\frac{1}{1.2.3}\)- \(\frac{1}{48.49.50}\)
F=\(\frac{6533}{39200}\)
Tính
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{47.48.49.50}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{47.48.49.50}\)
\(=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\cdot\frac{6533}{39200}=\frac{6533}{117600}\)
\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(F=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{47.48.49.50}\)
Tính
\(C=1+\frac{1}{\left(-3\right)}+\frac{1}{\left(-3\right)^2}+....+\frac{1}{\left(-3\right)^{2015}}\)
Tính tổng : A = \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{98.99.100.101}\)
tính:
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{97.98.99.100}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)
hai bạn trước đó gửi sai hết rùi. đúng theo sách NÂNG CAO PHÁT TRIỂN TOÁN 6 TẬP 2 thì bài này có đáp án thì bằng 1353/8120 nhé
Tính F = 1/1.2.3.4 +1/2.3.4.5+1/3.4.5.6+....+1/47.48.49.50
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{200.201.202.203}\)
tính tổng trên
Lại phải giải hết
Gọi dãy số trên là A
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{200.201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-.....+\frac{1}{200.201.202}-\frac{1}{201.202.203}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{201.202.203}\)(chỗ này lm hơi tắt tí )
\(3A=\frac{1}{6}-\frac{1}{8242206}=\frac{1373701}{8242206}-\frac{1}{8242206}=\frac{1373700}{8242206}\)
\(A=\frac{1373700}{8242206}:3=\frac{457900}{8242206}\)
\(c=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{98.99.100.101}\)= ?