So sánh : 2016 x 2018 với 2017x 2017
so sánh :
2015/2016+2016/2017+2017/2018+2018/2015 với 4
2015/2016+2016/2017+2017/2018+2018/2015 < 4
so sánh x với 3.Trong đó x=2016/2017+2017/2018+2018/2016
AI NHANH MK TICK CHO NHA LÀM ƠN MK CẦN GAAPS
\(x=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1\)
\(=>x< 3\)
Ko dùng máy tính hãy so sánh 2016/2017+2017/2018+2018/2019+2019/2016 với 4
\(x^{2018}+2x^{2017}+3x^{2016}+...+2017x+2018\)
voi x=1 tinh bieu thuc tren
\(x^{2018}+2x^{2017}+3x^{2016}+...+2017x+2018\)
\(=1+2+3+...+2017+2018\)
\(=\frac{2018.\left(2018+1\right)}{2}=2037171\)
so sánh : P = 2016/2017 + 2017/2018 + 2018/2019 và Q = 2016 + 2017 + 2018/2017 + 2018 + 2019
Ta có :
\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)
\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)
\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)
\(\Rightarrow P>Q\)
Chúc bạn học tốt !!!
vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q
Vậy P<Q.
mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá
Đơn giản P < Q
Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1
Tổng Q có 3 phân số lớn hơn 1
So sánh 2016/2017+2017+2018 và 2016+2017/2017+2018
so sánh: A=2016/2017+2017/2018 và B=2016+2017/2017+2018
Tính A và B rồi ta đi so sánh:
A = \(\frac{2016}{2017}\) + \(\frac{2017}{2018}\) = \(1.999008674\)
B = \(\frac{2016+2017}{2017+2018}\) = \(0.9995043371\)
Mà 1.999008674 > 0.9995043371
Nên: A > B
Giải như bạn Trần Nhật Quỳnh thà không làm còn hơn.
so sánh
P=2015/2016+2016/2017+2017/2018 và Q=2015+2016+2017/2016+2017+2018
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)