B= \(24^{54}\). \(54^{24}\). . \(^{2^{10}}\) CMR : B \(⋮\) \(^{72^{63}}\)
CMR
\(^{24^{54}.54^{24}.2^{10}⋮72^{63}}\)
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)
Mà \(2^{196}.3^{126}⋮2^{189}.3^{126}\Rightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\)
CMR 24 mũ 54 nhân 54 mũ 24 nhân 2 mũ 10 chia hết 72 mũ 63
CMR
24^54 nhân 54^24 nhân 2^10 chia hêt cho 72^63
CMR
2454.5424.210 CHIA HẾT CHO 7263
cmr 2454. 5424. 210 chia het 7263
CMR:2454.5424 210 chia het cho 7263
Cmr 2454.5424.210 chia hết cho 7263 B
bạn nào giúp mình sẽ tik
24^54 * 54^24 * 2^10 = (3 * 2^3)^54 * (2 * 3^3)^24 * 2^10
= 3^126 * 2^196(1)
72^63 = (2^3 * 3^2) ^63 = 2^189 * 3^126(2)
từ (1) và (2)=>24^54 * 54^24 * 2^10 chia hết 72^63
CMR:
a,76+75-74 chia hết cho 11.
b,2454.5424.210 chia hết cho 7263.
a) \(7^6+7^5-7^4\)chia hết cho 11
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55=7^4.5.11\)chia hết cho 11
b) \(24^{54}.54^{24}.2^{10}\)chia hết cho \(72^{63}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.2^{24}.2^{10}.3^{54}.3^{72}\)
\(=2^{196}.3^{126}\)
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}\)chia hết \(2^{189}.3^{126}\)
\(\Rightarrow24^{54}.54^{24}.2^{10}\)chia hết cho\(72^{63}\)
CMR:\(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
\(24^{54}.54^{24}.2^{10}=3^{54}.2^{162}.2^{24}.3^{72}.2^{10}=3^{126}.2^{196}\)
ta có: \(72^{63}=9^{63}.8^{63}=\left(3^2\right)^{63}.\left(2^3\right)^{63}=3^{72}.2^{108}\)
ta có: \(\frac{3^{126}.2^{196}}{3^{72}.2^{108}}=3^{54}.2^{88}\)
suy ra \(3^{126}.2^{196}\) chia hết cho \(3^{72}.2^{108}\)
suy ra \(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)