Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Hà Ánh
Xem chi tiết
Ngốc Trần
Xem chi tiết
Bui Thi Thu Phuong
Xem chi tiết
Trương Quang Hải
20 tháng 2 2016 lúc 13:18

 Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 

Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

Big Boss
3 tháng 3 2017 lúc 12:30

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
Suy ra 9 là nghiệm của f(x) 

Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
Suy ra -4 là nghiệm của f(x) 

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

Đào Hương Giang
Xem chi tiết
Thắng Nguyễn
12 tháng 5 2016 lúc 11:31

Thay x=1 ta được

(1-1).f(1)=(1+4).f(1+8)

<=>5.f(9)=0

<=>f(9)=0

suy ra 9 là nghiệm của f(x)

Thay x=-4 ta được:

(-4-1).f(-4)=(-4+4).F(-4+8)

<=>-5.f(-4)=0

<=>f(-4)=0

suy ra -4 là nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm là -4 và 9

Hương
Xem chi tiết
Real Madrid
Xem chi tiết
Real Madrid
2 tháng 7 2016 lúc 17:56

a. Cho đa thức: x – 1/2 x2 = 0

-Phân tích được: x(1 – 1/2x) = 0

– suy ra:  x = 0  hoặc: 1 – 1/2x = 0 ⇒ x = 2

– Vậy nghiệm của đa thức đã cho là x = 0; x = 2.

b.Cho biết (x – 1).f(x) = (x + 4). f(x + 8) với mọi x

Chứng minh rằng f(x) có ít nhất hai nghiệm.

Vì (x – 1).f(x) = (x + 4). f(x + 8) với mọi x nên ta có:

+ Khi x = 1 thì  0.f(1) = (1 + 4).f(1 + 8)

⇒   0 = 5. f(9) ⇒  f(9) = 0

⇒ x = 9 là một nghiệm của f(x)

+ Khi x= – 4 thì (- 4 – 1).f(-4) = 0. f(-4 + 8)

⇒ -5.f(-4) = 0.f(4) ⇒ f(-4) = 0

⇒ x= – 4 là một nghiệm của f(x)

Vậy f(x) có ít nhất hai nghiệm là 1 và – 4  (đpcm)

 
  
Real Madrid
2 tháng 7 2016 lúc 17:59

nha bạn nào k cho mình nhớ nhắn tin cho mình biết mình sẽ k lại cho

Real Madrid
2 tháng 7 2016 lúc 17:59

nha k mình đi mình k lại cho nhé

Lysandra
Xem chi tiết
Phạm Thu Huyền
Xem chi tiết
Nguyễn Linh Chi
15 tháng 4 2019 lúc 1:07

Với x=-4 Ta có: 

\(\left(-4-1\right)f\left(-4\right)=\left(-4+4\right)f\left(-4+8\right)\Leftrightarrow-5f\left(-4\right)=0.f\left(-4\right)=0\Leftrightarrow f\left(-4\right)=0\)

=> x=-4 là một nghiệm của f(x)

Với x=1 ta có:

\(\left(1-1\right)f\left(1\right)=\left(1+4\right)f\left(1+8\right)\Leftrightarrow0.f\left(1\right)=5.f\left(9\right)\Leftrightarrow5.f\left(9\right)=0\Leftrightarrow f\left(9\right)=0\)

=> x=9 là một nghiệm của f(x)

Vậy f(x) có ít nhất 2 nghiệm

Hanni Lee
Xem chi tiết

Thay x=1 ta được 
(1-1).f(1)=(1+4).f(1+8) 
<=>5.f(9)=0 
<=>f(9)=0 
suy ra 9 là nghiệm của f(x) 
Thay x=-4 ta được: 
(-4-1).f(-4)=(-4+4).F(-4+8) 
<=>-5.f(-4)=0 
<=>f(-4)=0 
suy ra -4 là nghiệm của f(x) 
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9