Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
❤Edogawa Conan❤
Xem chi tiết
❤Edogawa Conan❤
Xem chi tiết
❤Edogawa Conan❤
Xem chi tiết
Dương Minh Ngọc
28 tháng 7 2018 lúc 11:23

Bạn xét :

1/2 + 1/3 + 1/4 > 1

Thì : 1/5 + 1/6 + 1/7 + 1/8 + ...> 1

Vậy : 1/2 + 1/3 + 1/4 + ... 1/63 > 2

Hậu DZ
28 tháng 7 2018 lúc 13:21


Ta có: 1/2 + 1/3 + 1/4 = 6/12 + 4/12 + 3/12 = 13/12 > 1
     Và 1/5 + 1/6 + 1/7 + 1/8 + ... + 1/63 > 1
Suy ra 1/2 + 1/3 + ... + 1/63  > 1+1
Suy ra 1/2 + 1/3 + ... + 1/63  > 2
Vậy 1/2 + 1/3 + ... + 1/63  > 2
Chúc bạn học tốt

Ngô Thị Hà
Xem chi tiết
Nguyễn Thị Thúy Quỳnh
Xem chi tiết
Nguyễn Phúc Trung Dũng
Xem chi tiết
Nguyễn Thị Thúy Quỳnh
Xem chi tiết
Lê Mạnh Tiến Đạt
4 tháng 4 2017 lúc 19:32

b, Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

                \(\frac{1}{3^2}< \frac{1}{2.3}\)

                ..................

                 \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên C < \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}\)

<=> C < \(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)

<=> C < \(1+1-\frac{1}{100}\)

<=> C < \(2-\frac{1}{100}=\frac{199}{100}\)

Nguyễn Tuấn Minh
4 tháng 4 2017 lúc 19:36

\(B=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{2^5}+...+\frac{1}{2^6-1}\right)\)

\(B< 1+\frac{1}{2}.2+\frac{1}{4}.4+...+\frac{1}{2^5}.32\)

\(B< 1+1+1+...+1\)( 6 số 1)

B<1.6=6

\(C=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(C< 1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.10}\right)=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)\(=1+\left(1-\frac{1}{100}\right)< 1+1=2\)

Vậy C<2

Phạm Cẩm Tú
30 tháng 4 2018 lúc 13:50

C<1+1/1.2+1/2.3+...+1/99.100

=>C<1+1/1-1/100

<=>C<1+99/100

=>C<199/200

=>C<2

BẠN TỰ GIẢI CHI TIẾT HƠN NHA ^_^ 

MÌNH GIẢI HƠI TẮT CHÚT :))

Phương Trình Hai Ẩn
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết
Wall HaiAnh
3 tháng 5 2018 lúc 17:39

Trả lời

a) Đặt \(H=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow H< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow H< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow H< 1-\frac{1}{100}\)

\(\Leftrightarrow H< \frac{99}{100}\)

\(\Leftrightarrow A< 1+\frac{99}{100}\)

Ta thấy \(\frac{99}{100}< 1\Rightarrow A< 2\)

Vậy A<2 (đpcm)

b) Ta có: 1=1

             \(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

               \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)

               \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)

                \(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< \frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=1\)

                \(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}< \frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}=1\)

                 \(\Rightarrow B< 1+1+1+1+1+1\)

                 \(\Rightarrow B< 6\)

   Vậy B<6 (đpcm)