phân tích đa thức
x^4+6x^3+11x^2+6x+1
Phân tích đa thức đa thức thành nhân tử
x^4+6x^3+11x^2+6x+1
đặt y=x2+1
=>y2=(x2+1)2
y2=x4+2x2+1
đặt P(x)=x^4+6x^3+11x^2+6x+1
=x4+2x2+1+6x3+6x+9x2
=x4+2x+1+6x(x2+1)+9x2
thay y2=x4+2x2+1 và y=x2+1 ta được
Q(y)=y2+6xy+9x2
=(y+3x)2
thay y=x2+1 ta được:
(x2+3x+1)2
vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2
phân tích đa thức B thành tích của 2 tam thức bậc 2 với hệ số nguyên; B = x^4 - 6x^3 + 11x^2 - 6X + 1
phân tích đa thức ra nhân tử x4+6x3+11x2+6x+1
phân tích đa thức
x^4+6x^3+11x^2+6x+1
x^4+x^3+x^2+x+1
6x^4+5x^3-38x^2+5x+6
x^4+5x^3-12x^2+5x+1
a)\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+9x^2+1+6x^3+6x+2x^2\)
\(=\left(x^2+3x+1\right)^2\)
\(x^4+5x^3-12x^2+5x+1\)
\(=\left(x^4-2x^3+x^2\right)+\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)\)
\(=x^2\left(x^2-2x+1\right)+7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x^2+7x+1\right)\left(x-1\right)^2\)
phân tích đa thức thành nhân tử
A=x^4+3x^3+6x^2-5x+3
B=x^4-6x^3+11x^2-6x+1
ai không giải được là ... tự biết -_-
b) http://olm.vn/hoi-dap/question/118763.html
Phân tích các đa thức bằng phương pháp đồng nhất hệ số
a, 4x^4+4x^3+5x^2+2x+1
b, x^4+6x^3+11x^2+6x+1
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(2x^2\right)^2+2.2x^2.x+x^2+4x^2+2x+1\)
\(=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)
\(=\left(2x^2+x+1\right)^2\)
\(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Chúc bạn học tốt.
phân tích đa thức
a)x^4+6x^3+11x^2+6x+1
b)x^4+x^3+x^2+x+1
c)6x^4+5x^3-38x^2+5x+6
d)x^4+5x^3-12x^2+5x+1
dễ mà bạn xin 20 phút làm ra giấy nhé :))
a) \(\left(x^4+6x^3+9x^2\right)+2x^2+6x+1\)
\(\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(\left(x^2+3x+1\right)^2\)
b) \(x^4+x^3+x^2+x+1\)
câu b, chúa sẽ c/m x ko tồn tại , và nó là 1 đa thức bất khả Q . trong R
vì lớp 8 chưa học đến số phức
\(x^4+x^3=-x^2-x-1\)
\(x^4+x^3+\frac{1}{4}x^2=\left(\frac{1}{4}x^2-x^2\right)-x-1\)
\(\left(x^2+\frac{1}{2}x\right)^2=-\frac{3}{4}x^2-x-1\)
\(4\left(x^2+\frac{1}{2}x\right)^2=-3x^2-4x-4\)
\(\Delta`=\left(-2\right)^2-\left(-4\right).\left(-3\right)=4-12< 0\)
denta < 0 x vô nghiệm
vậy đa thức trên ko thể phân tích và nó là 1 đa thức bất khả Q
c) ,
\(\left(6x^4-12x^3\right)+\left(17x^3-34x^2\right)-\left(4x^2-8x\right)-\left(3x-6\right)\)
\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)
\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)\)
\(\left(x-2\right)\left\{\left(6x^3+18x^2\right)-\left(x^2+3x\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left\{6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)\)
\(\left(x-2\right)\left(x+3\right)\left\{\left(6x^2+\frac{6}{3}x\right)-\left(\frac{9}{3}x+\frac{9}{9}\right)\right\}\)
\(\left(x-2\right)\left(x+3\right)\left\{6x\left(x+\frac{1}{3}\right)-\frac{9}{3}\left(x+\frac{1}{3}\right)\right\}\)
\(\left(X-2\right)\left(X+3\right)\left(X+\frac{1}{3}\right)\left(6x-1\right)\)
d)
\(\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)
\(x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)
\(\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)
\(\left(x-1\right)\left\{\left(x^3-x^2\right)+\left(7x^2-7x\right)+\left(x-1\right)\right\}\)
\(\left(x-1\right)^2\left(x^2+7x+1\right)\)
\(\Delta=49-4=45\)
\(x1,2=\frac{-7+\sqrt{45}}{2},\frac{-7-\sqrt{45}}{2}\)
\(\left(x-1\right)^2\left(x-\frac{7+\sqrt{45}}{2}\right)\left(x-\frac{7-\sqrt{45}}{2}\right)\)
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
Phân tích đa thức B thành tích của hai tam thức bậc hai với hệ số nguyên
\(B=x^4-6x^3+11x^2-6x+1\)
\(B=x^4-6x^3+11x^2-6x+1\)
\(=x^4-6x^3+9x^2+2x^2-6x+1\)
\(=\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2+2\left(x^2-3x\right)+1\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right).1+1^2\)
\(=\left(x^2-3x+1\right)^2\)