Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
duong lee
Xem chi tiết
Minh Triều
5 tháng 7 2015 lúc 11:05

đặt y=x2+1

=>y2=(x2+1)2

y2=x4+2x2+1

đặt P(x)=x^4+6x^3+11x^2+6x+1

=x4+2x2+1+6x3+6x+9x2

=x4+2x+1+6x(x2+1)+9x2

thay y2=x4+2x2+1 và y=x2+1 ta được 

Q(y)=y2+6xy+9x2

=(y+3x)2

thay y=x2+1 ta được:

(x2+3x+1)2

vậy x^4+6x^3+11x^2+6x+1=(x2+3x+1)2

Hoàng Trang Ngân
Xem chi tiết
Dinh Thi My Linh
Xem chi tiết
Edokawa Conan
Xem chi tiết
Edokawa Conan
26 tháng 7 2018 lúc 13:19

help me

Kiệt Nguyễn
13 tháng 9 2019 lúc 11:45

a)\(x^4+6x^3+11x^2+6x+1\)

\(=x^4+9x^2+1+6x^3+6x+2x^2\)

\(=\left(x^2+3x+1\right)^2\)

Kiệt Nguyễn
13 tháng 9 2019 lúc 11:48

\(x^4+5x^3-12x^2+5x+1\)

\(=\left(x^4-2x^3+x^2\right)+\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)\)

\(=x^2\left(x^2-2x+1\right)+7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)\)

\(=\left(x^2+7x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x^2+7x+1\right)\left(x-1\right)^2\)

Vũ Quang Trường
Xem chi tiết
VN in my heart
24 tháng 7 2016 lúc 11:14

b) http://olm.vn/hoi-dap/question/118763.html

loveyoongi03
Xem chi tiết
Pham Van Hung
7 tháng 10 2018 lúc 14:59

       \(4x^4+4x^3+5x^2+2x+1\)

\(=\left(2x^2\right)^2+2.2x^2.x+x^2+4x^2+2x+1\)

\(=\left(2x^2+x\right)^2+2\left(2x^2+x\right)+1\)

\(=\left(2x^2+x+1\right)^2\)

       \(x^4+6x^3+11x^2+6x+1\)

\(=\left(x^2\right)^2+2.x^2.3x+\left(3x\right)^2+2x^2+6x+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Chúc bạn học tốt.

Edokawa Conan
Xem chi tiết
Edokawa Conan
26 tháng 7 2018 lúc 17:22

help me

giải pt bậc 3 trở lên fr...
26 tháng 7 2018 lúc 17:27

dễ mà bạn xin 20 phút làm ra giấy nhé :)) 

giải pt bậc 3 trở lên fr...
26 tháng 7 2018 lúc 18:27

a) \(\left(x^4+6x^3+9x^2\right)+2x^2+6x+1\)

      \(\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

        \(\left(x^2+3x+1\right)^2\)

b) \(x^4+x^3+x^2+x+1\)

câu b,  chúa sẽ c/m x ko tồn tại , và nó là 1 đa thức bất khả Q . trong R 

vì lớp 8 chưa học đến số phức  

     \(x^4+x^3=-x^2-x-1\)

 \(x^4+x^3+\frac{1}{4}x^2=\left(\frac{1}{4}x^2-x^2\right)-x-1\)

\(\left(x^2+\frac{1}{2}x\right)^2=-\frac{3}{4}x^2-x-1\)

\(4\left(x^2+\frac{1}{2}x\right)^2=-3x^2-4x-4\)

\(\Delta`=\left(-2\right)^2-\left(-4\right).\left(-3\right)=4-12< 0\)

          denta < 0 x vô nghiệm

vậy đa thức trên ko thể phân tích và nó là 1 đa thức bất khả Q

c) ,   

\(\left(6x^4-12x^3\right)+\left(17x^3-34x^2\right)-\left(4x^2-8x\right)-\left(3x-6\right)\)

\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)

     \(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)\)

      \(\left(x-2\right)\left\{\left(6x^3+18x^2\right)-\left(x^2+3x\right)-\left(x+3\right)\right\}\)

      \(\left(x-2\right)\left\{6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right\}\)

\(\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)\)

 \(\left(x-2\right)\left(x+3\right)\left\{\left(6x^2+\frac{6}{3}x\right)-\left(\frac{9}{3}x+\frac{9}{9}\right)\right\}\)

\(\left(x-2\right)\left(x+3\right)\left\{6x\left(x+\frac{1}{3}\right)-\frac{9}{3}\left(x+\frac{1}{3}\right)\right\}\)

\(\left(X-2\right)\left(X+3\right)\left(X+\frac{1}{3}\right)\left(6x-1\right)\)

d)

\(\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)

\(x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)

\(\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)

\(\left(x-1\right)\left\{\left(x^3-x^2\right)+\left(7x^2-7x\right)+\left(x-1\right)\right\}\)

\(\left(x-1\right)^2\left(x^2+7x+1\right)\)

\(\Delta=49-4=45\)

\(x1,2=\frac{-7+\sqrt{45}}{2},\frac{-7-\sqrt{45}}{2}\)

\(\left(x-1\right)^2\left(x-\frac{7+\sqrt{45}}{2}\right)\left(x-\frac{7-\sqrt{45}}{2}\right)\)

    

Nguyễn Việt Tiến
Xem chi tiết
0o0 Nhok kawaii 0o0
Xem chi tiết
Pham Van Hung
4 tháng 9 2018 lúc 20:56

\(B=x^4-6x^3+11x^2-6x+1\)

   \(=x^4-6x^3+9x^2+2x^2-6x+1\)

   \(=\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2+2\left(x^2-3x\right)+1\)

   \(=\left(x^2-3x\right)^2+2\left(x^2-3x\right).1+1^2\)

   \(=\left(x^2-3x+1\right)^2\)