Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Gia Bảo
Xem chi tiết
Nguyễn Linh Chi
7 tháng 3 2020 lúc 16:19

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Phan Nghĩa
5 tháng 7 2020 lúc 14:03

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 15:47

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
5 tháng 7 2020 lúc 16:12

Trời ạ cay vãi shit đánh máy xong rồi tự nhiên bấm hủy T.T bài 1 ngắn đã đành ......

\(WLOG:a\ge b\ge c\)

Ta dễ có:\(\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\)

\(\le\frac{a}{b+c+1}+\frac{b}{b+c+1}+\frac{c}{b+c+1}\)

\(=\frac{a+b+c}{b+c+1}\)

Ta cần chứng minh:

\(\frac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)

\(\Leftrightarrow a+b+c+\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(b+c+1\right)\le1+b+c\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1+b+c\right)\le1-a\) ( 1 )

Mà theo AM - GM :

\(\left(1-b\right)\left(1-c\right)\left(1+b+c\right)\le\left(\frac{1-b+1-c+1+b+c}{3}\right)^3=1\)

Khi đó ( 1 ) đúng

Vậy ta có đpcm

Nếu bài toán trở thành

\(\frac{a}{bc+2}+\frac{b}{ca+2}+\frac{c}{ab+2}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\) thì bài toán khó định hướng hơn rất nhiều :D

Khách vãng lai đã xóa
chiến
Xem chi tiết
Hoàng Hiếu Võ
Xem chi tiết
ngoc bich 2
Xem chi tiết
Nguyễn Khang
6 tháng 8 2019 lúc 10:39

Sai đề à? x = y = 1 thì VT  > 1/4

ngoc bich 2
6 tháng 8 2019 lúc 13:45

Mình cũng nghĩ là đề sai,... do cái này là tài liệu trên mạng.

NGUYỄN MINH TÀI
Xem chi tiết
 Mashiro Shiina
26 tháng 5 2018 lúc 11:17

\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge0\)(1)

\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}-1=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}=-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le0\)

\(\Rightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\) (2)

(1);(2) => đpcm

Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2020 lúc 16:11

Do \(-1\le x\le1\Rightarrow2-x^2>0\)

BĐT tương đương:

\(\Leftrightarrow2+2\sqrt{1-x^2}\ge\left(2-x^2\right)^2\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(\Leftrightarrow2+2t\ge\left(1+t^2\right)^2\)

\(\Leftrightarrow t^4+2t^2-2t-1\le0\)

\(\Leftrightarrow\left(t-1\right)\left(t^3+t^2+3t+1\right)\le0\) (luôn đúng \(\forall t\in\left[0;1\right]\))

Dấu "=" xảy ra khi \(t=1\) hay \(x=0\)

luu thanh huyen
Xem chi tiết
Lee Je Yoon
Xem chi tiết
Đạt Hoàng Minh
25 tháng 7 2016 lúc 22:28

P=\(\sqrt{\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1}\)

  =\(\sqrt{x-\sqrt{x}-x-\sqrt{x}+x+1}\)

  =\(\sqrt{x-2\sqrt{x}+1}\)

  =\(\sqrt{\left(\sqrt{x}-1\right)^2}\)

  =\(\sqrt{x}-1\)