( 2018 - \(\frac{2}{135}\)+ \(\frac{1}{50}\)) - ( 1 - \(\frac{7}{135}\)+ \(\frac{4}{50}\)) - (5 + \(\frac{5}{135}\)+ \(\frac{3}{50}\))
\(\left(2018-\frac{2}{135}+\frac{1}{50}\right)-\left(1-\frac{7}{135}+\frac{4}{50}\right)-\left(5+\frac{5}{135}+\frac{3}{50}\right)\)
\(\left(2018-\frac{2}{135}+\frac{1}{50}\right)-\left(1-\frac{7}{135}+\frac{4}{50}\right)-\left(5+\frac{5}{135}+\frac{3}{50}\right)\)
\(=2018-\frac{2}{135}+\frac{1}{50}-1+\frac{7}{135}-\frac{4}{50}-5-\frac{5}{135}-\frac{3}{50}\)
\(=2012-\frac{6}{50}\)
BT1: Tính
5) ( 2008 - \(\frac{2}{135}\) + \(\frac{1}{50}\) ) - ( 1 - \(\frac{7}{135}\) + \(\frac{4}{150}\)) - ( 5 + \(\frac{5}{135}\) + \(\frac{3}{50}\))
Ta có: \(\left(2008-\dfrac{2}{135}+\dfrac{1}{50}\right)-\left(1-\dfrac{7}{135}+\dfrac{4}{150}\right)-\left(5+\dfrac{5}{135}+\dfrac{3}{50}\right)\)
= \(2008-\dfrac{2}{135}+\dfrac{1}{50}-1+\dfrac{7}{135}-\dfrac{4}{150}-5-\dfrac{5}{135}-\dfrac{3}{50}\)
= (2008-1-5) + \(\left(\dfrac{1}{50}-\dfrac{3}{50}\right)-\left(\dfrac{2}{135}-\dfrac{7}{135}\right)-\dfrac{4}{150}\)
=2002 \(-\dfrac{1}{25}\)+\(\dfrac{1}{27}\)\(-\dfrac{4}{150}\)
=2001,9(3)
a) \(\frac{-1}{3}-\frac{8}{35}+\frac{-2}{9}-\frac{1}{135}+\frac{4}{5}+\frac{-4}{9}+\frac{3}{7}\)
b) \(\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}\)
a.\(\left(3-\frac{3}{4}+\frac{2}{3}\right)-\left(2+\frac{4}{3}-\frac{3}{2}\right)-\left(1-\frac{7}{3}-\frac{9}{2}\right)\)
b.\(-\frac{1}{3}-\frac{8}{35}+-\frac{2}{9}-\frac{1}{135}+\frac{4}{5}+\frac{4}{-9}+\frac{3}{7}\)
CTR:A=\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
Xét vế phải :
\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)
\(\frac{8-\frac{8}{7}-\frac{8}{261}+\frac{8}{85}}{-4+\frac{4}{7}+\frac{8}{261}+\frac{8}{85}}+\frac{\left(-75\right).\left(-135\right)+75.\left(-28\right)+107.\left(-75\right)}{1+3+5+...............................2013+2015}\)
Câu 8:=
1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)
=(1\(\frac{1}{2}\)+\(\frac{1}{2}\))+(2\(\frac{2}{3}\)+\(\frac{1}{3}\))+(3\(\frac{3}{4}\)+\(\frac{1}{4}\))+.......+(50\(\frac{50}{51}\)+\(\frac{1}{51}\))
=2+3+4+.....+51
=1325
Vậy:1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)=1325
Học Tốt!
\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+4\frac{4}{5}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{51}\)
\(=1+\frac{1}{2}+2+\frac{2}{3}+3+\frac{3}{4}+...+50+\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)
\(=\left(1+2+3+...+50\right)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)+...+\left(\frac{50}{51}+\frac{1}{51}\right)\)
\(=\frac{50.51}{2}+1+1+1+...+1\) ( có 50 số 1 )
\(=1275+50\)
\(=1325\)
cứ nhóm vào ta được
2+3+......+50+51
suy ra biểu thức trên bằng 1325
Tính hợp lí: \(\frac{4}{5}.50\frac{1}{2}+\frac{2}{3}.41\frac{7}{5}-\frac{5}{4}.40\frac{1}{2}+\frac{2}{3}.\frac{2}{7}\)
Chứng minh rằng:\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{49}+\frac{1}{50}=\frac{91}{50}-\frac{97}{49}+\frac{95}{48}-\frac{93}{47}+.....+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}=1\)
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)
\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{8}\right)-\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)