\(B=\frac{1}{19}+\frac{9}{19\times29}+\frac{9}{29\times39}+.......+\frac{9}{1999\times2009}\)
tính A=\(\frac{1}{19}+\frac{9}{19\times29}+\frac{9}{29\times39}+...+\frac{9}{1999\times2009}\)
\(A=\frac{1}{19}+\frac{9}{19.29}+...+\frac{9}{1999.2009}\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
đến đay bn tự tính nha
\(A=\frac{1}{19}+\frac{9}{19\times29}+\frac{9}{29\times39}+...+\frac{9}{1999+2009}la\)
viet dưới dang số thập phân tối giản
Gía trị của biểu thức:
\(A=\frac{1}{19}+\frac{1}{19\times29}+\frac{1}{29\times39}+...+\frac{1}{1999\times2009}\) là...
(Nhập kết quả dưới dạng phân số tối giản)
Giúp mình với mình cần gấp!
ta có 1/19 x 29 + 1/29x39+.........+1/1999x2009
=1/19 - 1/29 . 1/29 - 1/39 ........ 1/1999-1/2009
=1/2009-1/19
=-1990/38171
=>1/19+-1990/38171
=1/2009
K MK MK K LAI
Tính: \(\frac{1}{19}\)+\(\frac{9}{19\times29}\)+\(\frac{9}{29\times39}\)+.....+\(\frac{9}{2009\times2019}\)
\(\text{Ta có:}\frac{9}{9.19}+\frac{9}{19.29}+\frac{9}{29.39}+....+\frac{9}{2009.2019}\)
\(=\frac{9}{10}.\left(\frac{10}{9.19}+\frac{10}{19.29}+\frac{10}{29.39}+.....+\frac{10}{2009.2019}\right)\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2019}\right)\)
\(=\frac{9}{10}.\frac{670}{6057}\)
B=\(\frac{1}{19}+\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\)
\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{9}{9.19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)
\(=\frac{200}{2009}\)
Gọi \(B=\frac{9}{19}+A\)
\(A=\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\)
\(\frac{A}{9}=\frac{1}{19\cdot29}+\frac{1}{29\cdot39}+...+\frac{1}{1999\cdot2009}\)
\(\frac{A\cdot10}{9}=\frac{10}{19+29}+\frac{10}{29\cdot39}+...+\frac{10}{1999\cdot2009}\)
\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\)
\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{2009}\)
\(A=\frac{1791}{38171}\)
\(\Rightarrow B=\frac{1}{19}+\frac{1791}{38171}\)
\(\Rightarrow B=\frac{200}{2009}\)
Tính B = \(\frac{1}{19}+\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+....+\frac{9}{1999\cdot2009}\)
Tính giá trị của biểu thức sau:
A = \(\frac{1}{19}+\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+......+\frac{9}{1999\cdot2009}\)
Ta có: \(A=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2009}\right)\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)
\(\Rightarrow A=\frac{1}{19}+\frac{1791}{38171}\)
\(\Rightarrow A=\frac{200}{2009}\)
Vậy \(A=\frac{200}{2009}.\)
Giá trị của biểu thức :
A= \(\frac{1}{19}+\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\) là...
( Nhập kết quả dưới dạng phân số tối giản )
So sánh:
a) M=\(\frac{1999^{1999+1}}{1999^{2000}+1}và\)N=\(\frac{1999^{1989}+1}{1999^{2009}+1}\)
b) A=\(\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}và\)B=\(\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)