chứng tỏ rằng (2+2^2+2^4+2^8+. . .+2^2011+2^2012) chia hết cho 3
chứng tỏ rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3
số 215+424 có chia hết cho 2 ko?
tính tổng
S1=3+4+6+8+...+2010+2012
S2=2+3+5+7+...+2011+2012
*/ Tổng của 3 số tự nhiên liên tiếp có dạng: a+(a+1)+(a+2)=3a+3=3(a+1) => Luôn chia hết cho 3
*/ 215+424=2.214+2.212=2(214+212) => Luôn chia hết cho 2
*/ \(S1=\frac{2012\left(2012-1\right)}{2}-1-2=2023063\)
*/ \(S2=\frac{2012\left(2012-1\right)}{2}-1=2023065\)
Cho C = 2+2^2+2^3+...+2^2011+2^2012.Chứng tỏ rằng c chia hết cho 3
CÁC BẠN GIÚP MÌNH VỚI NHA!
Ta có: C = 2 + 22 + 23 + ..... + 22011 + 22012
=> C = (2 + 22) + (23 + 24) + ..... + ( 22011 + 22012 )
=> C = 2.(1 + 2) + 23.(1 + 2) + ........ + 22011.(1 + 2)
=> C = 2.3 + 23.3 + ..... + 211.3
=> C = 3.(2 + 23 + ..... + 211) chia hết cho 3 (đpcm)
Nguyễn Quang Trung làm đúng rồi. thông minh thật
chứng tỏ rằng A= 2+22+23+.......+22010+22011+22012 chia hết cho 6
Ta có:
A= 2+22+23+...+22010+22011+22012
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)
A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)
A=6+2^2x6 + .....+2^2008x6 + 2^2010x6
A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6
Vậy A chia hết cho 6
S =(2 + 22) + ( 23 + 24 ) +……..+ ( 22011 + 22012 )
= (2 + 22) +26(2 + 22) + ……….22010(2 + 22)
= 6 + 22.6 + ………22010.6
= 6 ( 1 + 22 + ……+ 22010 )
vậy chia hết cho 6
chứng tỏ rằng A= 2+22+23+.......+22010+22011+22012 chia hết cho 6
Ta có:
A= 2+22+23+...+22010+22011+22012
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)
A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)
A=6+2^2x6 + .....+2^2008x6 + 2^2010x6
A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6
Vậy A chia hết cho 6
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31
Cho A= 2011+20112+20113+...+20112015
a) Chứng tỏ rằng A chia cho 2012 dư 2011
b) Chứng tỏ rằng A chia hết cho 5
ai làm được mình sẽ tick 3 lần
Cho A= 1=3+3^2+3^3+...+3^2011+3^2012
Chứng tỏ rằng A chia hết cho 13
A = 1 + 3 + 32 + 33 +...+ 32011 + 32012
A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) +...+ ( 32010 + 32011 + 32012 )
A = ( 1 + 3 + 32 ) + 33 . ( 1 + 3 + 32 ) +...+ 32010 . ( 1 + 3 + 32 )
A = 13 + 33 . 13 +...+ 32010 . 13
A = 13 + ( 33 +...+ 32010 ) . 13
Vì 13 \(⋮\)13 nên 13 + ( 33 +...+ 32010 ) . 13 \(⋮\)13
hay A \(⋮\)13
~ Hok tốt ~
Cho mình hỏi bài này
Chứng tỏ rằng A=2+2^2+2^3+...+2^2010+2^2011+2^2012 chia hết cho 6
Ai làm được thì giải giùm mình
Thanks
http://olm.vn/hoi-dap/question/93424.html
Bạn vào đây tham khảo nhé !!!
A= 2+2^2+2^3+...+2^2010+2^2011+2^2012
A= (2^1+2^2).1+(2^1+2^2).2^2+...+(2^1+2^2).2^2010
A= 6.1+6.2^2+...+6.2^2010
A= 6.(1+2^2+...+2^2010) chia hết cho 6
Vậy A chia hết cho 6 3 TICK NHA!
a, Cho tổng A= 428+428+430 chứng tỏ rằng A chia hết cho 28
b, Tính tổng S = 22012-22011-........-2-1