tim n thuoc N biet 3n+13 chia het cho 2n+6
tim n thuoc N biet 3n+5 chia het cho 2n+1
\(3n+5⋮2n+1\)
Mà \(2n+1⋮2n+1\)
\(\Leftrightarrow\hept{\begin{cases}6n+10⋮2n+1\\6n+3⋮2n+1\end{cases}}\)
\(\Leftrightarrow7⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(7\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2n+1=1\\2n+1=7\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)
Vậy ..
Tim n thuoc so tu nhien biet :
a)24 chia het cho (2n +1 )
b)(n +15) (n+6)
c)(5n +4) chia het cho 8
d) (3n +19) chia het cho n + 4
Tim n thuoc N
a) n+5 chia het cho n
b) 3n+13 chia het cho n
c) 27-5n chia het cho n
d) 2n+3 chia het cho n-2
e) 3n+1 chia het cho 11-2n
a) vi n chia het cho n nen n+5 chia het cho n khi 5 chia het cho n
do do n thuoc U(5)={1;5}
vay n=1 hoac n=5
xin loi nhe tu tu roi minh giai tiep nhe
tim x thuoc N biet n2+3n-13 chia het cho n+3
n2 + 3n chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
Mà n(n + 3) chia hết cho n + 3
=> 13 chia hết cho n + 3
n + 3 thuộc U(13) = {1;13}
n + 3 = 1 => n = -2
n + 3 = 13 => n = 10
Vì n là số tự nhiên nên n = 10
Tim n thuoc N , biet :
a) n+4 chia het cho n
b ) 3n + 7 chia het cho n
c ) 27 - 5n chia het cho n
d ) 2n + 3 chia het cho n - 2
Tim n thuoc Z biet:
a; 7 chia het cho n-3
b; n-4 chia het cho n+2
c; 2n-1 chia het cho n+1
d; 3n+2 chia het chon n-1
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
Bai 1 tim n thuoc so tu nhien biet
a) (35-12n) chia het cho n
b) (16-3n) chia het cho (n+4)
c) (5n+2) chia het cho (9-2n)
d) (3n+1) chia het cho 11-2n
Bai 2 CMR:
a) neu (abc-deg) chia het cho 13 thi abcdeg chia het cho 13
b) neu ab = 2cd thi (abcd+134) chia het cho 67
Bài 1:
a) Để 35 - 12n chia hết cho n thì 35 phải chia hết cho n
=> n \(\in\) Ư(35) = {1;5;7;35}
Vậy n \(\in\){1;5;7;35}
b) 16 - 3n = 28 - 12 - 3n = -3(n + 4) + 28
Để 16 - 3n chia hết cho n + 4 thì 28 phải chia hết cho n + 4
=> n + 4 \(\in\) Ư(28) = {1;2;4;7;14;28}
Nếu n + 4 = 1 => n = -3 (loại)
Nếu n + 4 = 2 => n = -2 (loại)
Nếu n + 4 = 4 => n = 0
Nếu n + 4 = 7 => n = 3
Nếu n + 4 = 14 => n = 10
Nếu n + 4 = 28 => n = 24
Vậy n \(\in\) {0;3;10;24}
tim so tu nhien n,biet:
3n+13 chia het cho 2n+3(voi n>1)
tim so tu nhien n,biet:
3n+13 chia het cho 2n+3(voi n>1)