chứng tỏ rằng nếu số abcd chia hết cho 99 thì ab + cd chia hết cho 99 và ngược lại
Mình mới vào nên chưa biết nhiều .Giúp mình nha , thanks
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết 99 thì ab + cd chia hết cho 99 và ngược lại
Bài 2 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Chứng tỏ rằng : Nếu số abcd chia hết cho 99 thì ab +cd chia hết cho 99 và ngược lại.
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM
chứng tỏ rằng nếu số abcd chia hết cho 99 thì ab+cd chia hết cho 99 và ngược lại.
Ta có: abcd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
Vì 99 . ab chia hết cho 99 \(\Rightarrow\)ab + cd chia hết cho 99 ( ĐPCM )
Ngược lại:
Ta có: ab + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)abcd chia hết cho 99 ( ĐPCM )
Bài này tương tự bài lúc nãy
Chỉ thay đổi cách diễn đạt thôi
Ủng hộ nha
Chứng minh rằng: nếu số abcd chia hết cho 99 thì ab + cd chia het cho 99 và ngược lại
Chứng tỏ rằng abcd chia hết 999. thì ab +cd chia hết cho 99 và ngược lại
Chứng tỏ rằng nếu abcd chia hết cho 99 thì ab +cd chia hết cho 99 và ngược lại
abcd chia hết cho 99. Suy ra abcd chia hết cho 11 và 9.
Để abcd chia hết cho 11. Suy ra (a+c)-(b+d)=11;0hay (b+d)-(a+c)=11;0.(1)
Để abcd chia hết cho 9. Suy ra a+b+c+d chia hết cho 9.(2)
Từ (2) suy ra ab+cd chia hết cho 9 (vì a+b+c+d chia hết cho 9)
Từ (1) suy ra ab+cd chia hết cho 11 vì ab=10xa+b; cd=10xc+d suy ra ab+cd=10xa+b+10xc+d=10x(a+c)+(b+d)
Nếu (a+c)-(b+d)=0 hay (b+d)-(a+c)=0
Suy ra b+d=a+c suy ra ab+cd=11(a+c)=11(b+d)
Nếu (a+c)-(b+d)=11 hay (b+d)-(a+c)=11
Suy ra ab+cd=10x(a+c)+(a+c)+11 chia hết cho 11 ab+cd=10x(11+b+d)+(b+d)=11x10+11x(b+d) chia hết cho 11
Vậy abcd chia hết cho 99 Suy ra ab+cd chia hết cho 99(và ngược lại)
Chứng tỏ rằng :
a, Nếu abcd chia hết cho 99 thì ab + cd chia hết cho 99.
b, Nếu ab + cd chia hết cho 99 thì abcd chia hết cho 99.
Bấm vào đây bạn nhé Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
Chứng tỏ rằng :
a, Nếu abcd chia hết cho 99 thì ab + cd chia hết cho 99.
b, Nếu ab + cd chia hết cho 99 thì abcd chia hết cho 99.
b, ta có: abcd = ab.100+cd
= ab.99+ab+cd
=ab.99+( ab+cd)
Vì ab.99 chia hết cho 99, ab+cd chia hết cho 99
Nên abcd chia hết cho 99 nếu ab+cd chia hết cho 99
chứng tỏ rằng nếu số abcd chia hết cho 99 thì ab + cd chia hết cho 99 và ngược lại
abcd chia hết cho 99 thì ab + cd chia hết cho 99
abcd=ab.100+ cd =ab.99+ab +cd=ab.99+(ab +cd)
vì 99 chia hết cho 99 => a.99 chia hết cho 99
mà theo đề bài abcd chia hết cho 99 => (ab+cd) phải chia hết cho 99 (tính chất chia hết của 1 tổng cho 1 số)
vậy abcd chia hết cho 99 thì ab + cd chia hết cho 99
* c/ minh ý ngược lại: ab + cd chia hết cho 99 thì abcd chia hết cho 99
ta có ab + cd chia hết cho 99 và ab.99 chia hết cho 99 (vì 99 chia hết cho 99)
=> (ab+cd +ab.99 ) chia hết cho 99 ( t/chất chia hết của 1 tổng cho 1 số)
mà ab+cd +ab.99 =ab+ab.99 +cd=ab.(99+1)+cd=ab.100+cd=abcd
vậy abcd chia hết cho 99abcd chia hết cho 99 thì ab + cd chia hết cho 99
abcd= ab.100+ cd =ab.99+ab +cd=ab.99+(ab +cd)
vì 99 chia hết cho 99 => a.99 chia hết cho 99
mà theo đề bài abcd chia hết cho 99 => (ab+cd) phải chia hết cho 99 (tính chất chia hết của 1 tổng cho 1 số)
vậy abcd chia hết cho 99 thì ab + cd chia hết cho 99
* c/ minh ý ngược lại: ab + cd chia hết cho 99 thì abcd chia hết cho 99
ta có ab + cd chia hết cho 99 và ab.99 chia hết cho 99 (vì 99 chia hết cho 99)
=> (ab+cd +ab.99 ) chia hết cho 99 ( t/chất chia hết của 1 tổng cho 1 số)
mà ab+cd +ab.99 =ab+ab.99 +cd=ab.(99+1)+cd=ab.100+cd=abcd
vậy abcd chia hết cho 99