tìm giá trị nhỏ nhất của C
C=|x+11|+17-x
tìm giá trị nhỏ nhất của C=( x+√x+17/√x +x) với x>=0. Help me, thanks.
Lời giải:
\(C=\frac{x+\sqrt{x}+17}{x+\sqrt{x}}=1+\frac{17}{x+\sqrt{x}}\)
Để $C$ nhỏ nhất thì $\frac{17}{x+\sqrt{x}$ nhỏ nhất
Tức là $x+\sqrt{x}$ lớn nhất với mọi $x\geq 0$
Khi $x\geq 0$ thì ta không thể tìm GTLN của $x+\sqrt{x}$ vì cứ cho $x$ tăng vô hạn thì $x+\sqrt{x}$ cũng tăng vô hạn.
Vì vậy biểu thức C không có min bạn nhé. Bạn cần bổ sung thêm điều kiện khác về $x$ để tìm.
Tìm giá trị nhỏ nhất của:
C=/x+5/+/x+17/
Tìm giá trị nhỏ nhất của:
C=/x+5/+/x+17/
a) Tìm x biết: |x+10| + |x+20| + |x+30| =5x
b) Tìm giá trị nhỏ nhất của biểu thức A= -2018+ |x+7|
c) Tìm giá trị lớn nhất của biểu thức B= -2018- |x-17|
a) Tìm giá trị nhỏ nhất:
A = /x - 3/ +1
b) Tìm giá trị lớn nhất
B = -100 - /7 - x/
c) Tìm giá trị lớn nhất
C = -(x +1) ^2 - /2-y/ +11
d) Tìm giá trị nhỏ nhất
D = (x - 1)^2 + /2y + 2/ + 3
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
tìm giá trị nhỏ nhất của C=|x+8|+|x+5|+|x+1|
D=|x-2|+|x-19|+|x-17|
C = |x + 8| + |x + 5| + |x + 1|
Ta có: |x + 8| + |x + 1| = |x + 8| + |-x - 1| \(\ge\)|x + 8 - x - 1| = 7
|x + 5| \(\ge\)0
=> C \(\ge\)0 + 7 = 7
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+8\right)\left(-x-1\right)\ge0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}-8\le x\le-1\\x=-5\end{cases}}\) <=> x = -5
Vậy MinC = 7 <=> x = -5
D = |x - 2| + |x - 19| + |x - 17|
Ta có: |x - 2| + |x - 19| = |x - 2| + |19 - x| \(\ge\)|x - 2 + 19 - x| = 17
|x - 17| \(\ge\)0
=> D \(\ge\)0 + 17 = 17
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)\left(19-x\right)\ge0\\x-17=0\end{cases}}\) <=> \(\hept{\begin{cases}2\le x\le19\\x=17\end{cases}}\) <=> x = 17
Vậy MinD = 17 <=> x = 17
Cho \(A=\sqrt{x+2}+\dfrac{3}{11};B=\dfrac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trị lớn nhất của B
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
Tìm giá trị nhỏ nhất của biểu thức :
a/A = | x | + 20
b/B = | x - 1 | + 17
c/C = -( x - 1 )^2 + 30
a, Giá trị nhỏ nhất là 20
b, giá trị nhỏ nhất là 17
c,Giá trị nhỏ nhất là 30
a, /x/+20
/x/> hoặc bằng 0 với mọi x
/x/+20 > hoặc bằng 20 với mọi x
=> A> hoặc bằng 20
dấu"=" xảy ra khi /x/+20=0 => x+20=0 => x=-20
Vạy min A =20 khi x=-20
a/ Ta có: \(A=\left|x\right|+20\ge20,\)tại \(x=0\)
b/ Ta có: \(B=\left|x-1\right|+17\ge17,\)tại \(x=1.\)
c/ Ta có: \(C=-\left(x-1\right)^2+30\ge30,\) tại \(x=1.\)
Bài 9 : tìm giá trị lớn nhất của biểu thức
A) -x^2-2x+3
B) -4x^2+4x-3
C) -x^2+6x-15
Bài 8 tìm giá trị nhỏ nhất của biểu thức
B)X² — 6x + 11
C. X² – x +1
D. X² – 12x + 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
tìm giá trị nhỏ nhất của biểu thức
B= x^2 + 8x-17
C= x^2 +5x+1
\(B=x^2-8x-17\)
\(=\left(x^2-8x+16\right)-33\)
\(=\left(x-4\right)^2-33\ge-33\)
vậy min B=-33 khi x=4
\(C=x^2+5x+1\)
\(=\left(x^2+5x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
vậy min C = -21/4 khi x= -5/2
Ta có : \(B=x^2+8x-17\)
\(\Rightarrow B=x^2+8x+16-33\)
\(\Rightarrow B=\left(x+4\right)^2-33\)
Mà ; \(\left(x+4\right)^2\ge0\forall x\)
Nên : \(B=\left(x+4\right)^2-33\ge-33\forall x\)
Vậy GTNN của B là -33 khi x = -4