tìm GTNN của \(P=\frac{(1-\sqrt{x})(2+\sqrt{x})}{4-x}\)
B=\(\frac{x-4\sqrt{x}+1}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
1) rút gọn B
2)tính B vs x=\(9+4\sqrt{2}\)
3) tìm GTNN của B
\(P= (\sqrt x-\frac{x+2}{\sqrt{x}+1}):(\frac{\sqrt x}{\sqrt x+1}-\frac{\sqrt x-4}{1-x})\)
a,rút gọn P
b,tìm gt của x thỏa mãn P<0
c,tìm gtnn của P
ĐKXĐ: x \(\ge\)0; x \(\ne\)1 ; x \(\ne\)4
a) P = \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
P = \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}:\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}\)
P = \(\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-x-\sqrt{x}+4}\)
P = \(\frac{\left(1-\sqrt{x}\right)\left(\sqrt{x}-2\right)}{4-x}\)
P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) P < 0 <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Do \(\sqrt{x}+2>0\) => \(\sqrt{x}-1< 0\) => \(\sqrt{x}< 1\) => \(x< 1\)
kết hợp với đk => S = {x| \(0\le x< 1\)}
c) P = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)
Do \(\sqrt{x}+2\ge2\) => \(-\frac{3}{\sqrt{x}+2}\ge-\frac{3}{2}\) => \(1-\frac{3}{\sqrt{x}+2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 0
Vậy MinP = -1/2 khi x = 0
Baì 1:Với x>4 Tìm GTNN của \(M=\frac{\sqrt{x}}{\sqrt{x}+1}\cdot\frac{\left(x+\sqrt{x}\right)}{\sqrt{x}-2}\)
Ta co:
\(M=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{x+\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{x}{\sqrt{x}-2}=8+\frac{\left(\sqrt{x}-4\right)^2}{\sqrt{x}-2}\ge8\)
Dau '=' xay ra khi \(x=16\)
Vay \(M_{min}=8\)khi \(x=16\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
\(B=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
1. Rút gọn B
2.Tìm x để B<0
3.Tìm GTNN của B
Cho A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{3\sqrt{x}+1}{1-x}\)
1.Rút Gọn A
2. Tìm giá trị A khi X=4
3.Tìm GTNN của A
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{3\sqrt{x}+1}{1-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b) Với x = 4 thỏa mãn ĐKXĐ
\(A=\frac{2\sqrt{4}-1}{\sqrt{4}+1}=\frac{4-1}{2+1}=\frac{3}{3}=1\)
c) Chưa nghĩ ra :<
cho P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a,Rút gọn
b,Tìm P khi x=25
c,Với x>9 Tìm GTNN của P
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
Cho A=\(\frac{2x+4}{1-x\sqrt{x}}+\frac{1+\sqrt{x}}{1-x}-\frac{1+2\sqrt{x}}{1+\sqrt{x}-2x}\)
a) Rút gọn A
b) Tìm GTNN của A
Cho biểu thức: P=\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
Rút gọn P , rồi tìm giá trị của x để P đạt GTNN
giúp mình với