Cho \(x+y=a,x^2+y^2=b,x^3+y^3=c\). Tính giá trị biểu thức: \(a^3-3ab+2c\)
Cho \(x+y=a,x^2+y^2=b,x^3+y^3=c\). Tính giá trị biểu thức: \(a^3-3ab+2c\)
2) a) Cho x+y=1.Tính giá trị biểu thức B= x3+3xy+y3
b)Cho a+b+c=9, a2+b2+c2=141.Tính giá trị biểu thức M=a.b+b.c+a.c
c)Cho:
x+y=a
x2+y2=b
x3+y3=c
Tính giá trị biểu thức N=a3-3ab+2c
CÁC BẠN ƠI HÃY GIÚP MÌNH LÀM BÀI NÀY VỚI . AI GIÚP MÌNH ĐƯỢC THÌ CHO MÌNH CẢM ƠN NHA!
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
bài 1: Cho : x+y= 3 . tính giá trị biểu thức:
A= x^2+2xy+y^2= 4x-4y+1
bài 2:cho a^2+b^2+c^2= m. tính giá trị biểu thức :
B= (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
1. Cho x + y = 1. Tính giá trị biểu thức A = x3 + y3 + 3xy
2. Cho a + b = 10. Tính giá trị biểu thức M = a3 + b3 + 3ab
1, \(A=x^3+y^3+3xy\)
\(=x^3+3x^2y+3xy^2+y^2+3xy-3x^2y-3xy^2\)
\(=\left(x+y\right)^3+3xy-3xy\left(x+y\right)\)
Thay x +1 = 1 ta có
\(1^3+3xy-3xy.1=1+3xy-3xy=1\)
Bài 1:
a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
e) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x2 + y2 , x3 + y3 , (x2 - y2)2 , x6 + y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x2 + y2, x3 - y3, (x2- y2)2, x6 - y6
h) Cho a + b + c = 0, a2+ b2 + c2 = 1. Tính giá trị của biểu thức H = a4 + b4 + c4
i) Cho a + b = a3 + b3 =1. Chứng minh: a2 + b2 = a4+ b4
j) Cho x + y = a + b; x2 + y2 = a2 + b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a2 + b2 = 1; c2 + d2 = 1; ac + bd = 0. CMR: ab + cd = 0
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
a,\(a+b+c=9\)
\(\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)
Vì \(a^2+b^2+c^2=141\)
\(\Rightarrow2ab+2bc+2ca=-60\)
\(\Rightarrow2\left(ab+bc+ca\right)=-60\)
\(\Rightarrow ab+bc+ca=-30\)
Vậy ...
b,\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
\(\Rightarrow x^3+3xy.1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
Vậy...
Cho x+y = 3. Tính giá trị biểu thwucs A= x^2+2xy+y^2-4x-4y+1
Cho a2+b2+c2 =m Tính giá trị của biểu thức sau A=( 2a+2b-c)^2 + (2b+2c-a)^2 +(2c+2a-b)^2
a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc :)
Hok tốt . Nhìn câu b mik nản quá nên thôi :)
2. Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
•Phân tích đa thức thành nhân tử:
1) x8+3x4+3
2) (x+1)(x+2)(x+3)(x+4)-24
•Tính giá trị biểu thức:
a) 15x91.5+150x0.85
•Cho a+b=1 Tính giá trị biểu thức M = a3+b3+3ab(a2+b2)+6a2b2(a+b)
•Cho x-y=2 ; x2+y2=10. Tính giá trị biểu thức x3-y3
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
a. \(15.91,5+150.0,85\)
\(=15.91,5+15.8,5\)
\(=15\left(91,5+8,5\right)=15.100=1500\)
bài 1: Cho : x+y= 3 . tính giá trị biểu thức: A= x^2+2xy+y^2 - 4x-4y+1
bài 2:cho a^2+b^2+c^2= m. tính giá trị biểu thức : B= (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab) =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m
bài 1
\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)