giả sử a-c là ước của ab+cd CMR a-c cũng là ước của ad+bc
Giả sử a - c là ước của ab + cd. Chứng minh rằng a - c cũng là ước của ad + bc
ab + cd - (ad + bc) = ab - bc + cd - ad = b(a-c) - d(a-c) = (a-c)(b-d)
<=> (ab + cd) /(a-c) - (ad + bc) /(a-c) = b - d Є Z
Vậy (ab + cd) chia hết cho (a-c) <=> (ad + bc) chia hết cho (a - c)
Giả sử a-c là ước của ab+cd. Chứng minh rằng a-c là ước của ad+cd
cHo các số nguyên dương khác nhau thỏa mãn:a là ước của b+c+bc,b là ước của a+c+ac,c là ước của a+b+ab .cmr a,b,c không đồng thời là số nguyên tố
Cho hình thang ABCD (AB//CD). AK là phân giác góc A ,BK là phân giác góc B .Giả sử K thuộc D .
Cmr: AD+BC=CD
Cho hình thang ABCD (AB//CD) có AB<CD ; AD=BC=BC; GÓC A+ GÓC C=\(180^O\)
A CHỨNG MINH RẰNG BD LÀ TIA PHÂN GIÁC CỦA ADC
B CHỨNG MINH AC= BD
C GIẢ SỬ CD- 2AB TÍNH CÁC GÓC CỦA HÌNH THANG ABCD
cho mình xin lỗi ,câu c mình ghi sai 1 câu nhưng ko quan trọng lắm
"hình bình hành có 2 cạnh kề bằng nhau là hình thoi,bạn xem lại nhan,do mình bấm vội nhưng giải đúng đó
bạn ghi đề sai rồi ,phải là AB=BC=AD và CD=2AB nhan
hình bạn tự vẽ đi nhan
câu a:ta có AB//CD(vì ABCD là hình thang) nên góc BDC=góc ABD(1)
lại có AD=AB(gt)nên tamgiacs ADB cân tại A nên góc ABD=góc ADB(2)
từ (1) và (2) ta có góc ADB =góc BDC nên BD là phân giác goc ADC
câu b:xét tam giác ADC và tam giác BDC ,có
AD=BC(gt);DC :chung và góc D=góc C(vì ABCD là hình thang cân) nên 2 tam giác này bằng nhau nên AC=BD
câu c:gọi K là trung điểm CD ,ta có AB=1/2 CD =CK,mà AB=BC(gt)nên BC=CK(3)
lại có AB=1/2CD=DK mà AB//DK(vì ABCD là hình thang) nên ABKD là hình bình hành
mặt khác AB=AD(gt) nên ABKD là hình thoi(vì hình bình nhành có 2 cạnh bên bằng nhau là hình thoi đó)
=>BK=AB mà BC=AB =>BK=BC(4)
từ (3)và (4)=>BK=BC=CK nên BCK là tam giác đều nên góc C=60 độ và bằng góc D,=> góc A=120độ và bằng góc B
XONG,MỎI TAY QUÁ BN K CHO MÌNH NHAN,BYE
Giúp mik nha tối nay học rồi!
Bài 1 :Cho tứ giác ABCD có góc A+góc C=180 độ, AB<AC,AC là phân giác góc BAD.E thuộc cạnh Ad sao cho AE=AB.CMR: BC=CE=CD
Bài 2: Cho tứ giác ABCD có DB là phân giác góc ADC
a,Giả sử AB song song CD. CMR: AB=AD
b,Giả sử AB=AD.CMR: AB song song CD
Bài 3:Cho hình thnag ABCD có AB song song CD.AB=AD+BC.CMR: Phân giác góc C và D cắt nhau tại 1 điểm E nằm trên đoạn AB
Cho hình tang ABCD với AB // CD. Giả sử AD = BC. Gọi M là trung điểm của đường chéo AC. CMR góc MDC = góc BCD
B1)Tứ giác ABCD có AD=BC, các tia DA và CB cắt nhau tại O. Gọi I, K theo thứ tự là trung điểm của AB, CD. Đường thẳng IK cắt các đường thẳng AD, BC theo thứ tự ở E,F. CMR; OEF là tam giác cân
B2) Hình thang ABCD (AB//CD) có AB=a, CD=b, BC= c, AD= d. Các tia phân giác của các góc A và D cắt nhau ở E. Các tia phân giác của các góc B và C cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm của AD, BC.
a)CMR: 4 điểm M, E, F, N thẳng hàng
b) Tính các độ dài MN, MF, FN theo a,b,c,d
c) CMR: a+b= c+d thì E trùng với F
B3) Cho hình thang ABCD (AB//CD) có AB= AD+BC. CMR: các tia phân giác của góc C,D cắt nhau tại một điểm trên cạnh AB.
mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt
Vậy Rộp Rộp Rộp, các bạn khác đang hỏi, bạn không trả lời mà đăng như thế lên làm gì ?
Cho hình thang ABCD (AB//CD). M,N,E,F lần lượt là trung điểm của AD, BC, AC, BD.
a/ C/m: M,N,E,F thẳng hàng.
b/ Giả sử AB < CD. C/m \(EF=\frac{CD-AB}{2}\)
#Hình bạn tự vẽ nhé!!!#
a)Ta có: AM=DM(M là trung điểm của AD); BN=CN(N là trung điểm của BC)
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN//CD\left(1\right)\)
Ta lại có:AM=DM(cmt); AE=CE(E là trung điểm của AC)
\(\Rightarrow\)ME là đường trung bình của \(\Delta ACD\)
\(\Rightarrow ME//CD\left(2\right)\)
Từ(1) và (2), suy ra:\(MN\equiv ME\)(theo tiên đề Ơ-clit)
\(\Rightarrow M,N,E\) thẳng hàng (3)
Vì BN=CN(cmt); BF=DF(F là trung điểm của BD)
\(\Rightarrow\)NF là đường trung bình của \(\Delta BCD\)
\(\Rightarrow NF//CD\left(4\right)\)
Từ(1) và (4), suy ra:\(MN\equiv NF\)(theo tiên đề Ơ-clit)
\(\Rightarrow M,N,F\) thẳng hàng(5)
Từ (2) và (5), suy ra:M,N,P,Q thẳng hàng
a) +)Xét hình thang ABCD có: M là trug điểm AD, N là trung điểm BC
=> MN là đường trung bình hình thang ABCD
=> MN//AB//DC (1)
+) xét tam giác ADC có: M là trung điểm AD; E là trung điểm EC
=> ME là đường trung bình tam giác ADC
=> ME//=1/2 DC (2)
+) Xét tam giác ADB có M là trung điểm AD, F là trung điểm DB
=> MF là đường trung bình của tam giác ADB
=> MF//=1/2 AB (3)
Từ (1), (2), (3) suy ra MN, ME, MF cùng nằm trên một đường thẳng
=> M, N, E, F thẳng hàng
b)
Ta có: \(EF=ME-MF=\frac{1}{2}DC-\frac{1}{2}AB=\frac{DC-AB}{2}\)