CMR:a/\(81^7-29^9-9^{13}⋮45\)
b/\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
Chứng minh
a, 5^5 - 5^4 + 5^3 chia hết cho 7
b, 81^7 - 27^9 - 9^13 chia hết cho 45
c, 3^n+3 + 3^n+1 + 2^n+3 + 2^n+2 chia hết cho 6
Chứng minh rằng:
a) 7^6 - 7^5 + 7^9 chia hết cho 11
b) 10^9 + 10^8 +10^7 chia hết cho 22
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 45
Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11
Chứng minh rằng:
a) 7^6 - 7^5 + 7^9 chia hết cho 11
b) 10^9 + 10^8 +10^7 chia hết cho 22
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 45
7^6-7^5+7^9=7^5nhân(7-1+7^4)=7^5nhân 55=vì 55 chia hết cho 11,nên7^6-7^5+7^9 chia hết cho11
Bài 1: chứng minh rằng
a) 7^6 + 7^5 - 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Bài 2: Tìm n thuộc N biết
a) 5^n ( 1+5^2) = 650
b) 32^-n * 16^n = 1024
c) 3^-1 * 3^n + 5 * 3^n-1 = 162
d) 9 * 27^n = 3^5
e) ( 2^3 : 4 ) * 2^n = 4
f) 3^-2 * 3^4 * 3^n = 3^7
7^6+7^5+7^4 chia hết cho 11
= 7^4.2^2+7^4.7+7^4
= 7^4.(2^2+7+1)
= 7^4. 11
Vì tích này có số 11 nên => chia hết cho 7
tìm hai số x và y biết x:2=y:(-5) và x-y=-7
tìm hai số x;y.Biết 7x=3y và x-y=16
tìm ba số x,y,z.Biết 2a=4b và 3b=5c và a+2b-3c=99
CMR
1)\(81^7-27^9-9^{13}\)chia hết cho 45
2)\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10
3)\(3^{n+3}+3^{n+1}+2^{n+2}+2^{n+3}\)chia hết cho 6
Bài 1: Chứng minh rằng:
a, 5^5 - 5^4 + 5^3 chia hết cho 7.
b, 7^6 + 7^5 - 7^4 chia hết cho 11.
c, 10^9 + 10^8 + 10^7 chia hết cho 222.
d, 10^6 - 5^7 chia hết cho 59.
e, 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10 với n \(\in\) N*.
f, 81^7 - 27^9 - 9^13 chia hết cho 45.
a/ \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\left(đpcm\right)\)
b/ \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\left(đpcm\right)\)
c/ \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=1110000⋮222\left(đpcm\right)\)
d/ \(10^6-5^7=2^6.5^6-5^7=5^6\left(2^6-5\right)=5^6.59\left(đpcm\right)\)
e/ \(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)
f/ \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{24}.45⋮45\left(đpcm\right)\)
a) Ta có: 55 - 54 + 53
= 53(52 - 5 + 1)
= 53 . 3 . 7 \(⋮\) 7 (đpcm)
Bài 1. Chứng minh
a, 10^ 2020 + 10^ 2021 + 10^ 2022 chia hết cho 222
b, 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
c, 10^ 6 – 5 ^7 chia hết cho 59
d, 24^ 54 .54^ 24 .2^ 10 chia hết cho 72 ^63
e,3^ n+2 – 2^ n+2 + 3^ n – 2 ^n chia hết cho 10;
f, 3^ n+3 + 3^ n+1 + 2^ n+3 + 2^ n+2 chia hết cho 6
Bài 2.
a, Cho A = 1 + 2 + 2 ^2 + 2 ^3 + ...+ 2^ 99 . Chứng tỏ A chia hết cho 3; A chia 7 dư 1.
b, Cho B = 2 + 2^ 2 + 2^ 3 + ...+ 2^ 99 + 2^ 100 . Hỏi A có chia hết cho 6 không?
Bài 3. Cho A = 9^ 7 + 3^ 13 + 2. Hỏi A có chia hết cho 10 không?
1.Chứng minh rằng:
a,5^5 - 5^4 + 5^3 chia hết cho 7
b,7^6 + 7^5 - 7^4 chia hết cho 11
c,10^9 + 10^8 + 10^7 chia hết cho 222
d,10^6 - 5^7 chia hết cho 59
e,3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10 với mọi n thuộc N*
g,81^7 - 27^9 - 9^13 chia hết cho 45
h, 8^10 - 8^9 - 8^8 chia hết cho 55
i, 10^9 + 10^8 + 10^7 chia hết cho 555
chung minh rang :
3636- 910 se chia het cho 45
2 10 + 211 +212 se chia het cho 7
817- 279- 913 se chia het cho 45
3n+3+ 3 n+2 +2n+3 +2n+2 se chia het cho 6 moi n thuoc N
minh se tick cho nhung ai nhanh nhat va dung nhat nhe
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N
Chứng minh rằng:
\(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{24}\left(3^4-3^3-3^2\right)\)
\(=3^{24}.45\) \(⋮\) 45
Vậy \(81^7-27^9-9^{13}\) chia hết cho 45