cho tg ABC cân ở A (GÓC A nhọn
đường cao BH
CMR \(\dfrac{AH}{AC}=2\left(\dfrac{AB}{BC}\right)^2+1\)
Cho tam giác ABC cân tại A, có góc A nhọn . Vẽ đường cao BH. CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Kẻ đường cao AK.
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2
- Xét ΔAKC và ΔBHC có :
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC)
Góc C chung
Vậy ΔAKC đồng dạng với ΔBHC (g.g.)
⇨ AC/BC = KC/HC
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt)
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ)
⇔ 1/HC = 2AB/BC²
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế)
⇔ AC/HC = 2(AB/BC)² (AB = AC)
⇔ (AH + HC)/HC = 2(AB/BC)²
⇔ AH/HC + 1 = 2(AB/BC)²
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh)
Cho tam giác ABC cân tại A, góc A nhọn, đường cao BH.
CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Gọi E là điểm đối xứng của C qua A
=> \(\Delta\)BCE vuông tại E => \(HC=\frac{BC^2}{CE}=\frac{BC^2}{2AC}\)
\(AH=AC-HC=AC-\frac{BC^2}{2AC}=\frac{2AC^2-BC^2}{2AC}\)
\(\Rightarrow\frac{AH}{HC}=2\left(\frac{AC}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A ( góc A nhọn), đường cao BH. Chứng minh \(\frac{AH}{BH}=2\left(\frac{AB}{BC}\right)^2-1\)
vẽ thêm đường phụ là góc D đối xứng C qua A là dc
Cho tam giác ABC cân đỉnh A có góc A nhọn , đường cao BH . Chứng minh rằng : \(\dfrac{AH}{HC}=2\left(\dfrac{AB}{BC}\right)^2-1\)
Cho tam giác ABC cân tại A (góc A < 90 độ), đường cao BH. CMR: \(\frac{AH}{CH}=2\left(\frac{AB}{BC}\right)^2-1\)
TG ABC, góc A=90 độ, AB<AC, D trung điểm BC, đường thẳng vuông góc AD tại D cắt AB, AC tại F, E
a) CMR TG DCE đồng dạng TG DFB
b) CMR AE.AC=AB.AI
c) Đường cao AH của TG ABC cắt EF tại I. CMR \(\left(\frac{AD}{AI}\right)^2\)
Cho ΔABC, đường cao AH
Chứng minh:
a)ΔABCᔕΔHBA, AB2=BH*BC
b)AC2=CH*BC
c)AH2=BH*CH
d)\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
e)Biết M ∈ tia đối tia AC, AM<AC
AE⊥BM tại E
Chứng minh góc BEH=góc BAH
cho tg ABC cân tại A đường cao AH ,bt AH= .Gọi M là trung điểm của BH, N là trung điểm của AB ; AM cắt CN tại K .CMR: KH là p/g góc CKM
cho △ABC⊥A, đường cao AH, D và E lần lượt là hình chiếu của H trên AB, AC. chứng minh
a)\(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
b)\(\dfrac{CE}{BD}=\left(\dfrac{CA}{AB}\right)^3\)
c)\(AH^3=BC.BD.CE\)
d)\(3AH^2+BD^2+CE^2=BC^2\)
lm nhanh giúp mk nhé! Mk đang càn gấp lắm!
a) Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{HC}\)
b) Ta có: \(\left(\dfrac{CA}{AB}\right)^4=\left(\dfrac{CA^2}{AB^2}\right)^2=\left(\dfrac{CH.BC}{BH.BC}\right)^2=\dfrac{CH^2}{BH^2}=\dfrac{CE.CA}{BD.BA}\)
\(=\dfrac{CE}{BD}.\dfrac{CA}{BA}\Rightarrow\left(\dfrac{CA}{AB}\right)^3=\dfrac{CE}{BD}\)
c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BD.BA.CE.CA=BD.CE\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow BD.CE.BC=AH^3\)
d) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật
\(\Rightarrow AH=DE\Rightarrow AH^2=DE^2=DH^2+HE^2\)
Ta có: \(3AH^2+BD^2+CE^2=2AH^2+\left(DH^2+BD\right)^2+\left(HE^2+CE^2\right)\)
\(=2.HB.HC+BH^2+CH^2=\left(BH+CH\right)^2=BC^2\)