Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn
Xem chi tiết
Huỳnh Kim Nhật Thanh
29 tháng 6 2018 lúc 8:55

D=\(\frac{x^2+x-3x-3+4}{x+1}\)=\(\frac{\left(x+1\right)\left(x-3\right)+4}{x+1}\)=\(\left(x-3\right)+\frac{4}{x+1}\)là số nguyên (x#-1)

=> \(4⋮\left(x+1\right)\)=>\(x\in\left\{-5;-3;-2;0;1;3;\right\}\)

Nguyễn
29 tháng 6 2018 lúc 10:18

Cảm ơn bạn nhiều nha!

Nguyễn
Xem chi tiết
Nguyễn
Xem chi tiết
Lê Minh Vũ
28 tháng 6 2018 lúc 10:03

thiếu à bạn

Nguyễn
28 tháng 6 2018 lúc 10:33

Thiếu gì vậy bạn?

Nguyễn Hữu Phước
1 tháng 4 2020 lúc 16:49

có ai chơi roblox ko

Khách vãng lai đã xóa
Nguyễn
Xem chi tiết
Nguyễn Tất Đạt
29 tháng 6 2018 lúc 13:50

Để biểu thức D nhận giá trị nguyên thì \(\frac{x^2-2x+1}{x+1}\in Z\Leftrightarrow x^2-2x+1⋮x+1\)

Ta thấy: \(\left(x+1\right).\left(x+1\right)⋮x+1\Rightarrow x^2+2x+1⋮x+1\)

Suy ra \(x^2-2x+1-\left(x^2+2x+1\right)⋮x+1\)

\(\Rightarrow-4x⋮x+1\). Ta có: \(4\left(x+1\right)⋮x+1\Rightarrow4x+4⋮x+1\)

\(\Rightarrow\) \(4x+4+\left(-4x\right)⋮x+1\Rightarrow4⋮x+1\). Mà \(x+1\in Z\)

Nên \(x+1\)là ước nguyên của 4 \(\Rightarrow x+1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{0;1;3;-2;-3;-5\right\}.\)

Kết luận: ...

Nguyễn
9 tháng 7 2018 lúc 17:53

Cảm ơn  bạn nha!!

Bùi Minh Ngọc
Xem chi tiết
Minh Nguyen
28 tháng 2 2020 lúc 19:07

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(D=\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)

\(\Leftrightarrow D=\left(\frac{x}{x+2}+\frac{8x+8}{x\left(x+2\right)}-\frac{x+2}{x}\right):\frac{x^2-x+3+x+2}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\frac{x^2+5}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{\left(x^2+8x+8-x^2-4x-4\right)x\left(x+2\right)}{x\left(x+2\right)\left(x^2+5\right)}\)

\(\Leftrightarrow D=\frac{4x+4}{x^2+5}\)

Để \(D\inℤ\)

\(\Leftrightarrow4x+4⋮x^2+5\)

\(\Leftrightarrow4x^2+4x⋮x^2+5\)

\(\Leftrightarrow4\left(x^2+5\right)-16x⋮x^2+5\)

\(\Leftrightarrow16x⋮x^2+5\)

\(\Leftrightarrow256\left(x^2+5\right)-1280⋮x^2+5\)

\(\Leftrightarrow1280⋮x^2+5\)

\(\Leftrightarrow x^2+5\inƯ\left(1280\right)\)

Đoạn này bạn làm nốt nhé

Khách vãng lai đã xóa
Minh Nguyen
28 tháng 2 2020 lúc 21:35

bài mik sai từ đoạn \(4x^2+4x⋮x^2+5\)

k tương đương đc với \(4\left(x^2+5\right)-16x⋮x^2+5\)nhaaa !! 

MIk rút gọn đc D thôi :)) Phần còn lại chắc cậu tự làm nha

Khách vãng lai đã xóa
Trí Tiên
29 tháng 2 2020 lúc 10:09

Kết quả rút gọn của bạn Minh đúng rồi nhé, mình làm tiếp nha !

Để D là số nguyên

\(\Leftrightarrow4x+4⋮x^2+5\)

\(\Rightarrow\left(4x+4\right)\left(4x-4\right)⋮x^2+5\)

\(\Leftrightarrow16x^2-16⋮x^2+5\)

\(\Leftrightarrow16\left(x^2+5\right)-96⋮x^2+5\)

\(\Leftrightarrow96⋮x^2+5\)

\(\Leftrightarrow x^2+5\inƯ\left(96\right)\)

\(\Leftrightarrow x^2+5\in\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm8,\pm12,\pm16,\pm24,\pm32,\pm48,\pm96\right\}\)

Lại có : \(x^2+5\ge5>0\)

Do đó \(x^2+5\in\left\{6,8,12,16,24,32,48,96\right\}\)

\(\Leftrightarrow x^2\in\left\{1,3,7,11,19,27,43,91\right\}\)

Mà \(x^2\) là số chính phương và x là số nguyên

\(\Rightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\) ( thỏa mãn ĐKXĐ )

Thử lại ta thấy \(x=-1\) thỏa mãn D là số nguyên.

Vậy : \(x=-1\) để D nhận giá trị nguyên.

Khách vãng lai đã xóa
Nguyễn Đặng Thu Trúc
Xem chi tiết
Nguyễn
Xem chi tiết
Ngô Thái Sơn
28 tháng 6 2018 lúc 20:14

Có \(D=\frac{\left(x^2+2x+1-4x\right)}{x+1}\)

\(\frac{\left(x+1\right)^2-4x}{x+1}\)

\(x+1-\frac{4x}{x+1}\)

Do x là số nguyên => x+1 là số nguyên => để D  nguyên thì \(4x⋮x+1\)(1)

Mà \(4\left(x+1\right)⋮x+1\)

=> \(4x+4⋮x+1\)(2)

Lấy (2)-(1) ta có \(4⋮x+1\)

Do đó ta xét x + 1 \(\in\left(1,2,4,-1,-2,-4\right)\)

=> x \(\in\left(0,1,3,-2,-3,-5\right)\)

Trần Ngọc Bảo Ngân
Xem chi tiết
Nguyễn Đức Nam
Xem chi tiết
Nguyễn Huy Tú
9 tháng 8 2021 lúc 20:08

a, ĐK : \(x\ne\pm3;\frac{1}{2}\)

\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)

\(=\left(\frac{\left(x-1\right)\left(x-3\right)+2\left(x+3\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\frac{2x-1-2x-1}{2x+1}\right)\)

\(=\frac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}:\left(-\frac{2}{2x+1}\right)\)

\(=\frac{-2x+6}{\left(x+3\right)\left(x-3\right)}.\frac{-\left(2x+1\right)}{2}=\frac{2x+1}{x+3}\)

b, Ta có : \(\left|x+1\right|=\frac{1}{2}\)

TH1 : \(x+1=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2}\)

Thay vào biểu thức A ta được : \(\frac{-1+1}{-\frac{1}{2}+3}=0\)

TH2 : \(x+1=-\frac{1}{2}\Leftrightarrow x=-\frac{3}{2}\)

Thay vào biểu thức A ta được : \(\frac{-3+1}{-\frac{3}{2}+3}=\frac{-2}{\frac{3}{2}}=-\frac{4}{3}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
9 tháng 8 2021 lúc 20:10

c, Ta có : \(P=\frac{x}{2}\Rightarrow\frac{2x+1}{x+3}=\frac{x}{2}\Rightarrow4x+2=x^2+3x\)

\(\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

b, Ta có : \(\frac{2x+1}{x+3}=\frac{2\left(x+3\right)-5}{x+3}=2-\frac{5}{x+3}\)

\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

x + 31-15-5
x-2-42-8
Khách vãng lai đã xóa
Nguyễn Hải Anh Jmg
Xem chi tiết
Trần Việt Linh
1 tháng 8 2016 lúc 0:32

\(A=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\)     \(\left(ĐK:x\ne1;x\ne2\right)\)

\(=\frac{1-1+x}{1-x}:\frac{\left(1-x\right)\left(x+1\right)-\left(1-2x\right)}{1-x}\)

\(=\frac{x}{1-x}\cdot\frac{1-x}{1-x^2-1+2x}\)

\(=\frac{x}{-x^2+2x}\)

\(=\frac{x}{-x\left(x-2\right)}=-\frac{1}{x-2}=\frac{1}{2-x}\)

b) Để A=\(\frac{1}{2}\) \(\Leftrightarrow\)\(\frac{1}{2-x}=\frac{1}{2}\)

                   \(\Leftrightarrow2-x=2\)

                   \(\Leftrightarrow-x=0\Leftrightarrow x=0\)

c) Để A>1 \(\Leftrightarrow\)\(\frac{1}{2-x}>1\)

                 \(\Leftrightarrow\)\(\frac{1}{2-x}-1>0\) 

                 \(\Leftrightarrow\)\(\frac{1-2+x}{2-x}>0\)

                 \(\Leftrightarrow\)\(\frac{x-1}{2-x}>0\)

\(\Leftrightarrow\begin{cases}x-1>0\\2-x>0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\2-x< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< 1\\x>2\end{cases}\)(vô nghiệm)

\(\Leftrightarrow1< x< 2\)

Vậy \(1< x< 2\) thì A<1