CMR: Không tồn tại a, b thuộc Z sao cho: \(\left(a+b\sqrt{2}\right)^2=2004+2003\sqrt{2}\)
CMR: Không tồn tại a, b thuộc Z sao cho: \(\left(a+b\sqrt{2}\right)^2=2004+2003\sqrt{2}\)
Giả sử tồn tại a,b∈Za,b∈Z thỏa mãn ycđb
ĐKĐB ⇔\(a^2+2b^2+2ab\sqrt{2}=2004+2003\sqrt{2}\)
⇔\(\left(a^2+2b^2-2004\right)=\sqrt{2}\left(2003-2ab\right)\)
⇔\(\sqrt{2}=\dfrac{a^2+2b^2-2004}{2003-2ab}\left(1\right)\)
Với a,b nguyên thì \(\dfrac{a^2+2b^2-2004}{2003-2ab}\) là số hữu tỉ.
Mà √22 là số vô tỉ (đây là bài toán quen thuộc)
Do đó \(\left(1\right)\) vô lý, hay điều giả sử là sai, tức là không tồn tại a,b∈Z thỏa mãn đkđb.
Cho a và b là 2 số hữu tỉ khác 0. CMR tồn tại 2 số hữu tỉ x và y sao cho \(\left(a+b\sqrt{5}\right)\left(x+y\sqrt{5}\right)=b+a\sqrt{5}\)
Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
ad nhị thưj newton khai triển 2 cái kia ra =="
Chứng minh không tồn tại 2 số nguyên a,b sao cho: \(\left(a+b\sqrt{2}\right)^2=2016+2017\sqrt{2}\)
gấu koala có avata chim cánh cụt
vô tay
CMR: A không phụ thuộc vào giá trị a, b
\(A=\dfrac{2}{\sqrt{ab}}:\left(\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{b}}\right)^2-\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\left(a,b>0;a\ne b\right)\)
\(A=\dfrac{2}{\sqrt{ab}}:\left(\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}}\right)^2-\dfrac{a+b}{\left(\sqrt{a}-b\right)^2}\)
\(=\dfrac{2}{\sqrt{ab}}.\dfrac{ab}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\dfrac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\dfrac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(==\dfrac{-\left(a-2\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\dfrac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
Cho biểu thức: \(Q= \left(\frac{1}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right).\left(1+\frac{1}{a}\right)\)
a) Tìm a để Q tồn tại
b) CMR: Q không phụ thuộc vào giá trị của a
Giai pt:\(\sqrt{x-2}+\sqrt{y+2003}+\sqrt{z-2004}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)
\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)
\(ĐK:x\ge2,y\ge-2003,z\ge2004\)
Pt đã cho tương đương :
\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)
Chứng minh tồn tại số nguyên tố x ; y ; z sao cho \(0
Bài này chỉ là CM tồn tại liệu có được mò không?