Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Huyền Trang
Xem chi tiết
Nghiêm Phương Thúy
Xem chi tiết
jksfhisd
Xem chi tiết
Xyz OLM
7 tháng 6 2019 lúc 14:43

1)

A = \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)

   = \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)

   = \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)

   = \(\frac{1}{5}-\frac{1}{12}\)

   = \(\frac{7}{60}\)

B = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)

   = \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

   = \(\frac{3.4.5.....100}{2.3.4....99}\)

   = \(\frac{100}{2}=50\)

C = \(\frac{1}{4^{2-1}}+\frac{1}{6^{2-1}}+\frac{1}{8^{2-1}}...+\frac{1}{30^{2-1}}\)

   = \(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{30}\)

   = \(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{2.15}\)

   = \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{4}+...+\frac{1}{2}.\frac{1}{15}\)

   = \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}\right)\)

   

Nguyễn Vũ Minh Hiếu
7 tháng 6 2019 lúc 17:45

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

~ Hok tốt ~

Vũ Huỳnh Phong
8 tháng 6 2019 lúc 8:11

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

....

Ngô Ngọc Khánh
Xem chi tiết
Đoàn Đức Hà
17 tháng 6 2021 lúc 15:20

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2018.2019}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2019-2018}{2018.2019}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{2019}\right)\)

\(=\frac{2017}{2019}\)

Khách vãng lai đã xóa
Hà Thiện Nhân S195425
Xem chi tiết
👁💧👄💧👁
5 tháng 7 2021 lúc 11:01

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\\ 2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\\ A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}=\dfrac{1023}{1024}\)

Phương Anh Cute
Xem chi tiết
Quynh
Xem chi tiết
nguyễn ngọc quyền linh
Xem chi tiết
ngothithoi
Xem chi tiết
Luis Suárez
10 tháng 7 2018 lúc 9:22

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\frac{2004}{2005}=\frac{1002}{2005}\)

Lê Thị Hải Anh
10 tháng 7 2018 lúc 9:21

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\) Từ đó áp dụng tính câu a

\(\frac{2}{1.3}=\frac{1}{1}-\frac{1}{3}\) Áp dụng tính câu b

Han Sara ft Tùng Maru
10 tháng 7 2018 lúc 9:28

a) \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2017\times2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b) \(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2003\times2005}\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\times\frac{2004}{2005}\)

\(=\frac{1002}{2005}\)

Hok tốt #

kudo shinichi
Xem chi tiết