cho x,y,z thỏa:
x(x-1)+y(y-1)+z(z-1)
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
cho 3 số x,y,z khác 0 thỏa mãn y+z-x/3=z+x-y/y=x+y-z/z
tính giá trị biểu thức P =(1+x/y)(1+y/z)(1+z/x)
cho xyz thỏa mãn
x+y-2021z/z=y+z-2021x/x=z+x-2021y/y
tính p=(1+y/x)*(1+x/z)*(1+z/y)
Cho 3 số x;y;z khác 0 thỏa mãn điều kiện y+z-x/x=z+x-y/y=x+y-z/z
Khi đó (1+x/y)(1+y/z)(1+z/x)=?
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Cho x,y,z thỏa mãn: (x+y+1)/x =(x+z+2)/y =(x+y-3)/z = 1/(x+y+z).
Tìm x,y,z.
đề thiếu bạn ơi cái này phải áp dụng tính chất dãy tỉ số bằng nhau
Bạn ơi đề bài có vậy thôi nha.
Bạn chỉ mình cách dãy tỉ số bằng nhau đc ko ạ???
cho 3 số x;y;z khác 0 thỏa mãn điều kiện y+z-x/x=z+x-y/y=x+y-z/zkhi đó B=(1+x/y)(1+y/z)(1+z/x)có giá trị =
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=> x=y=z
Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2
1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2
1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2
Vậy B= 2.2.2 = 8
Cho x, y, z khác 0 thỏa mãn: x*(x^2−1/y−1/z) + y(y^2−1/z−1/x) + z(z^2−1/x−1/y) = 3 Tính : 1x+1y+1z
Cho x,y,z>0 thỏa mãn 1/x+1/y+1/z=2015. Tìm GTLN của (x+y)/(x^2+y^2) + (y+z)/(y^2+z^2) + (z+x)/(z^2+x^2)
cho các số dương thỏa x,y,z thỏa mãn \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\)=4
chứng minh rằng: \(\dfrac{1}{2x+y+z}\)+\(\dfrac{1}{x+2y+z}\)+\(\dfrac{1}{x+y+2z}\)\(\le\)1
Ta cần chứng minh:
\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)
\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
\(DBXR\Leftrightarrow a=b\)
Do các phép biến đổi tương đương nên (1) luôn đúng
Áp dụng (1), ta có:
\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Chứng minh tương tự, ta được:
\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)
\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
Cộng từng vế BĐT, ta được:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)
\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)