Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Lê Hồ Trọng Tín
8 tháng 9 2019 lúc 12:48

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

Hoàng Quý Lương
17 tháng 4 2020 lúc 21:06

eeeee

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
17 tháng 4 2020 lúc 21:07

e cái gì là em bé à

Khách vãng lai đã xóa
EnderCraft Gaming
Xem chi tiết
Nguyễn Huy Tú
25 tháng 12 2020 lúc 16:05

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)

Khách vãng lai đã xóa
Ha Ngoc Linh
Xem chi tiết
Nguyễn Hưng Phát
19 tháng 6 2018 lúc 16:07

\(A=\left(2x+\frac{1}{3}\right)^4-1=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\)

Vì \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2\ge0\) nên \(\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\) hay \(A\ge-1\)

Nên GTNN của A là -1 đạt được khi \(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)

Nguyen Thi Yen Anh
Xem chi tiết
shitbo
8 tháng 1 2019 lúc 14:07

\(~~~~~~~HD~~~~~~~\)

\(Tacó\)

\(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)

\(\Rightarrow C\ge-1\Rightarrow C_{min}=-1\)

Dấu "=" xảy ra khi:

\(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)

Vậy GTNN của C là: -1 khi: x=-1/6

Trần Tiến Pro ✓
21 tháng 1 2019 lúc 21:14

\(C=\left(2x+\frac{1}{3}\right)^4-1\)

\(\text{Vì }\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)

\(\Rightarrow C=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Dấu '' = '' xảy ra khi :

\(\left(2x+\frac{1}{3}\right)^4=0\)

\(\Rightarrow2x+\frac{1}{3}=0\)

\(\Rightarrow2x=-\frac{1}{3}\)

\(\Rightarrow x=-\frac{1}{6}\)

Vậy Min= -1 <=> x = - 1/6

Doanh_Doanh_Tiểu_Thư
Xem chi tiết
Top Scorer
5 tháng 6 2016 lúc 8:51

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

Thắng Nguyễn
5 tháng 6 2016 lúc 8:56

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

Trần Cao Anh Triết
5 tháng 6 2016 lúc 8:59

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

Nguyễn Mạnh Dũng
Xem chi tiết
Mê Cặc
17 tháng 8 2019 lúc 9:49

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

Nguyễn Tiến Dũng
Xem chi tiết
Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Đặng Quỳnh Ngân
Xem chi tiết
Nguyễn Phương HÀ
29 tháng 6 2016 lúc 17:56

điều kiên x khác {-1;-3}

P= \(\left(x+1-\frac{4}{x+1}\right):\frac{x+3}{x^2-2x-3}=\left(\frac{x^2+2x+1-4}{x+1}\right).\frac{\left(x-3\right)\left(x+1\right)}{x+3}\)

\(\frac{\left(x^2+2x-3\right)\left(x-3\right)}{x+3}=\frac{\left(x-1\right)\left(x-3\right)\left(x+3\right)}{x+3}=\left(x-1\right)\left(x-3\right)\)

P= x2-4x+3=(x-2)2-1\(\ge\)-1

=> MinP=-1 khi x=2

Bach Mai Phuong
Xem chi tiết