Cho tam giác ABC vuông cân tại A, giả sử trong tam giác đó có điểm M thỏa mãn điều kiện góc MBA = góc MAC = góc MCB.chứng minh MB=2.MA
Cho tam giác ABC vuông cân tại A. Giả sử có một điểm M trong tam giác thỏa mãn: Góc MBA=MAC=MCB. Chứng minh rằng MB=2.MA?
Cho tam giác ABC vuông cân tại A. Giả sử có một điểm M trong tam giác thỏa mãn: Góc MBA=MAC=MCB. Chứng minh rằng MB=2.MA?
#Toán lớp 7
Gọi N là giao điểm của BM và AC. Do \(\widehat{NAM}=\widehat{NBA}\) nên \(\Delta NAM\) đồng dạng với \(\Delta NBA\), suy ra \(\dfrac{NA}{NB}=\dfrac{NM}{NA}\) \(\Rightarrow NA^2=NB.NM\) (1)
Mặt khác, vì tam giác ABC vuông cân tại A nên \(\widehat{ABC}=\widehat{ACB}=45^o\), lại có \(\widehat{MBA}=\widehat{MCA}\) nên ta có \(\widehat{ABC}-\widehat{MBA}=\widehat{ACB}-\widehat{MCA}\) hay \(\widehat{NBC}=\widehat{NCM}\). Từ đây có\(\Delta NCM\) đồng dạng với tam giác \(\Delta NBC\), suy ra \(\dfrac{NC}{NB}=\dfrac{NM}{NC}\Rightarrow NC^2=NB.NM\) (2)
Từ (1) và (2), suy ra \(NA^2=NC^2\left(=NB.NM\right)\) \(\Rightarrow NA=NC\), suy ra N là trung điểm của đoạn AC \(\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{2}\). Mà \(AC=AB\) nên \(\dfrac{AN}{AB}=\dfrac{1}{2}\)
Mặt khác, \(\widehat{BAC}=\widehat{MAN}+\widehat{BAM}=90^o\), đồng thời \(\widehat{MAN}=\widehat{MBA}\) nên \(\widehat{MBA}+\widehat{BAM}=90^o\), do đó \(\Delta ABM\) vuông tại M \(\Rightarrow\widehat{AMB}=90^o\). Từ đó lại suy ra \(\Delta BAM\) và \(\Delta BNA\) đồng dạng, suy ra \(\dfrac{AN}{AM}=\dfrac{BA}{BM}\) hay \(\dfrac{AN}{AB}=\dfrac{AM}{BM}\). Nhưng do \(\dfrac{AN}{AB}=\dfrac{1}{2}\left(cmt\right)\) nên \(\dfrac{AM}{BM}=\dfrac{1}{2}\Rightarrow BM=2AM\) (đpcm)
Cho tam giác ABC vuông cân tại A. Giả sử trong tam giác có điểm M thỏa mãn \(\widehat{MBA}=\widehat{MAC}=\widehat{MCB}\). Chứng minh MB=2MA.
Cho \(\Delta ABC\)vuông cân tại A. Giả sử trong tam giác có điểm M thỏa mãn \(\widehat{MBA}=\widehat{MAC}=\widehat{MCB}\). Chứng minh MB=2.MA
Cho \(\Delta ABC\)vuông cân tại A. Giả sử trong tam giác có điểm M thỏa mãn \(\widehat{MBA}=\widehat{MAC}=\widehat{MCB}\). Chứng minh MB=2.MA
cho tam giác ABC cân tại A. Gỉa sử trong tam giác ABC có điểm M thỏa mãn góc MAB = góc MAC = góc MCB. Tính MA : MB:MC
cho tam giác ABC cân tại A. Trong tam giác lấy điểm M sao cho góc MAC=góc MBA=góc MCB . So sánh diện tích 2 tam giác AMB và BMC
cho tam giác ABC vuông tại A(AB<AC). Chọn điểm H là trung điểm AB. Trên cạnh BC lấy điểm M sao cho MS=MB
a/ chứng minh tam giác MAH = tam giác MBH và góc MAB = góc MBA
b/Chứng minh MH vuông góc AB
c/chứng minh góc MAC = góc MCA
d/ vẽ BE vuông góc AM tại E và vẽ CK vuông góc AM tại K. chứng minh CE//BK
Cho tam giác đều ABC.Trong tam giác đều ABC lấy điểm M sao cho MB = MC và góc BMC =90 độ.
a)Chứng minh tam giác ABM = tam giác AMC
b)Trong tam giác BMC lấy điểm E sao cho góc EBC =góc ECM = 30 độ. Chứng minh tam giác MEC cân
c)Giả sử điểm M nằm trong tam giác ABC sao cho MA :MB :MC =3 :4 :5 . Tính góc AMB
mk ko bt lm câu b nha ~ xl
c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)
=> DM = AD = AM
Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)
=> BD = MC (cặp cạnh tương ứng)
Ta có: DM = AM, BD = MC
=> DM : BM : BD = 3:4:5
=> tam giác BDM vuông tại M
=> góc AMB = 90o + 60o = 150o
a, Xét tam giác ABM và AMC có
BC=BA ( tam giác đều )
BMC=BMA=90độ
Góc C=A
=> ABM=AMC