Chứng minh rằng chỉ có duy nhất một cặp số nguyên tố sinh ba
Chứng minh rằng chỉ có duy nhất một bộ ba số nguyên tố mà hiệu của hai số liên tiếp là 4.
Giả sử p ; p+4 ; p+8 là ba số nguyên tố.
Ta thấy p \(\ne\) 2, vì nếu p = 2 thì p + 4 = 6 và p+ 8 = 10 là hợp số.
Xét p = 3 thì 3; 17; 11 là bộ ba số nguyên tố mà hiệu của ba số liên tiếp bằng 4.
Xét p > 3 thì p có dạng 3k+1 hoặc 3k+2 (k \(\in\) N) [kiến thức về số nguyên tố lớn hơn 3]
Loại p = 3k + 1 vì khi đó p + 8 = 3k + 1 + 8 = 3k + 8 = 3k + 3.3 = 3.(k+3) chia hết cho 3, là hợp số.
Loại p = 3k + 2 vì khi đó p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3.(k + 2) chia hết cho 3, là hợp số.
Vậy chỉ có duy nhất bộ ba số nguyên tố 3; 7; 11 thỏa mãn đề bài.
Suy ra điều phải chứng minh.
Bạn hỏi câu này, mọi người và O-l-M chọn câu trả lời của mình đi mà để mình còn có hứng giải tiếp !
tự tin nhỉ! chắc rằng mình giải đúng mà bảo olm chọn luôn
Chứng minh chỉ có duy nhất một bộ ba số nguyên tố mà hiệu của hai số liên tiếp bằng 4?
Chứng tỏ rằng chỉ có duy nhất một bộ ba số nguyên tố mà hiệu của hai số liên tiếp bằng 4.
gia su p ; p + 4 ; p + 8 la ba so nguyen to
ta thay p khong bang 2 vi neu p = 2 thi p + 4 = 6 va p + 8 = 10
xep p = 3 thi 3 ; 17 ; 11 la bo ba nguyen to lien tiep co hieu bang 4
xet p > 3 thi p co dang 3k + 1 hoac 3k + 2 (k thuoc N) [ kien thuc ve nguyen to lon hon 3]
loai p = 3k + 1 vi khi do p + 8 = 3k + 1 +8 = 3k + 8 = 3k + 3 . 3 = 3 . (k + 3) chia het cho 3, la hop so
loai p = 3k + 2 vi khi do p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3 . 2 = 3 . (k + 2) chia het cho 3, la hop so
vay chi co duy nhat 3; 7; 11 thoa man de bai
suy ra day la dieu can chung minh
ta thay p
toán lớp 1 mà cũng có toán chứng minh a
Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.
Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.
Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (k ∈ N)
+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.
+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.
=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự nhiên lẻ liên tiếp là số nguyên tố
Chứng minh rằng: Có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
chứng minh rằng chỉ có duy nhất 3 số nguyên tố mà hiệu 2 số bằng 4
Chứng minh rằng có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
Gọi 2k+1,2k+3,2k+52k+1,2k+3,2k+5 là 3 số tự nhiên lẻ liên tiếp
+) Nếu kk chia hết cho 3 →2k+3→2k+3 chia hết cho 3
+) Nếu kk chia 3 dư 1 →2k+1→2k+1 chia hết cho 3
+) Nếu kk chia 3 dư 2 →2k+5→2k+5 chia hết cho 3
→→ 3 tự nhiên lẻ tiên tiếp luôn tồn tại 1 số chia hết cho 3
→→ Nếu k=1→3,5,7k=1→3,5,7 là số nguyên tố
+)Nếu k>1→2k+1,2k+3,2k+5k>1→2k+1,2k+3,2k+5 là 3 số tự nhiên lớn hơn 3 do trong 3 số luôn tồn tại 1 số chia hết cho 3 suy ra số đó là hợp số →k>1→k>1 không có bộ 3 số nào thỏa mãn đề
Gọi 3 số tự nhiên lẻ liên tiếp là : p ; p+2 ; p+4
Với p=2 => p+2=4
Vì 4 là hợp số nên p là số nguyên tố khác 2
Với p=3 => p+2=5 => p+4=7
Vì 3, 5 và 7 là các số nguyên tố
=> 3, 5 và 7 là bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
p lớn hơn hoặc bằng 3 => p bằng 3k+1 hoặc 3k+2 (k là số tự nhiên khác 0)
Với p=3k+1 => p+2=3k+3 chia hết cho 3 (là hợp số nên loại)
Với p=3k+2 => p+4=3k+6 chia hết cho 3 (là hợp số nên loại)
=> Chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Vậy chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố.
Chúc bạn học tốt!
#Huyền#
Chứng minh rằng có duy nhất bộ ba số tự nhiên lẻ liên tiếp đều là số nguyên tố
là sao ?
Chứng minh rằng chỉ có duy nhất 1 bộ 3 số nguyên tố mà hiệu của hai số liên tiếp =4