chứng minh : nếu \(\sqrt{a}\) < \(\sqrt{b}\) thì a < b các bạn chỉ mình cách làm nhé, mình cảm ơn ạ !
Chứng minh: với a, b không âm
a) Nếu a<b thì \(\sqrt{a}< \sqrt{b}\);
b) Nếu \(\sqrt{a}< \sqrt{b}\) thì a<b
Chứng minh:
a) Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
( nếu các bạn có cách khác trong sách bài tập thì giúp mik nha!!!)
a. Phải bổ sung điều kiện a và b không âm nữa thì mới chứng minh được.
Đặt a = n2 => n = \(\sqrt{a}\)
Đặt b = m2 => m = \(\sqrt{b}\)
mà a < b
=> n2 < m2
=> \(\frac{n^2}{n}< \frac{m^2}{m}\)
=> n < m
=> \(\sqrt{a}< \sqrt{b}\)
b. Nếu \(\sqrt{a}< \sqrt{b}\)
=> \(\sqrt{a}.\sqrt{a}< \sqrt{b}.\sqrt{b}\)
=> a < b
Chứng minh rằng nếu a,b,c là các số dương thỏa mãn a+c=2b thì ta luôn có:
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
1) chứng minh rằng nếu a;b;c là các số ko âm và b là số trung bình cộng của a và c thì ta có \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{c}+\sqrt{a}}\)
Chứng minh rằng nếu a,b,c là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) cũng là các số hữa tỉ
Chứng minh rằng nếu a; b; c là các số hữu tỉ thì\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ
chứng minh rằng nếu a, b, c và a', b', c' là độ dài các cạnh của 2 tam giác đồng dạng thì: \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\)
Do hai tam giác có độ dài 3 cạnh là a,b,c và a',b',c' nên ta có tỷ lệ sau
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)
Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\) \(\Rightarrow\hept{\begin{cases}a=k.a'\\b=k.b'\\c=k.c'\end{cases}}\)
Ta có : \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{ka'.a'}+\sqrt{kb'.b'}+\sqrt{kc'.c'}\)
\(=a'.\sqrt{k}+b'.\sqrt{k}+c'.\sqrt{k}=\sqrt{k}.\left(a'+b'+c'\right)\)
Ta lại có : \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k.\left(a'+b'+c'\right)\left(a'+b'+c'\right)}=\sqrt{k}.\left(a'+b'+c'\right)\)
Vậy ......
1.cho 2hai số a,b không âm . chứng minh :
a) nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) nếu \(\sqrt{a}< \sqrt{b}\)thì a < b
2. cho số m dương . chứng minh :
a) nếu m > 1 thì m > \(\sqrt{m}\)
b) nếu m < 1 thì m < \(\sqrt{m}\)
3. cho số m dương . chúng minh
a) nếu m > 1 thì \(\sqrt{m}>1\)
b) nếu m < 1 thì \(\sqrt{m}< 1\)
MỘT LIKE CHO AI LÀM ĐC
Cho hai số a , b không âm . Chứng minh
a, Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b, Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
a) \(a< b\)
\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)
\(\rightarrow\sqrt{a}< \sqrt{b}\)
b) \(\sqrt{a}< \sqrt{b}\)
\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)
\(\rightarrow a< b\)
Ko chắc lắm ^^!
Cho hai số a , b không âm . Chứng minh :
a) Nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) Nếu \(\sqrt{a}< \sqrt{b}\) thì a < b
\(a,\)\(a< b\Rightarrow a-b< 0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)
Vì \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)\(\Rightarrow\sqrt{a}< \sqrt{b}\)\(\left(đpcm\right)\)
\(b,\)\(\sqrt{a}< \sqrt{b}\)\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)
Ta có :\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
Mà \(\sqrt{a}-\sqrt{b}< 0\); \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow a-b< 0\)\(\Leftrightarrow a< b\)