Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Bảo Trang
Xem chi tiết
truong huy hoang
7 tháng 3 2018 lúc 22:30

a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11

Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.

b. Đề bài sai

Chúc bạn học tốt!

Đỗ Bảo Trang
8 tháng 3 2018 lúc 21:22

Một lần nữa cảm ơn truong huy hoang nhé!

truong huy hoang
8 tháng 3 2018 lúc 22:34

Có gì đâu, câu nào khó cứ hỏi mk nhé, các bn bảo mk vẫn giỏi Toán mà.

minh nguyen
Xem chi tiết
Huyền Đoàn
Xem chi tiết
LyLy_Senpai
Xem chi tiết
hotboy
Xem chi tiết
robert lewandoski
16 tháng 6 2015 lúc 9:06

a,abcdeg=ab.10000+cd.100+eg

=9999.ab+99.cd+ab+cd+eg

=(9999ab+99cd)+(ab+cd+eg)

Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)

=>đpcm

b đợi tí chưa nghĩ ra

 

a,abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)
=>đpcm
b đợi tí chưa nghĩ ra

Phạm NGọc Thắng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
2 tháng 2 2017 lúc 21:22

Dễ mà bạn

câu a í

Bạn tham khảo một số bài toán đi

Phạm NGọc Thắng
2 tháng 2 2017 lúc 21:23

ab+cd+eg = 10a+b+d+10e+g 

=10(a+c+e)+b+d+g chia hết cho 11 thì

a+c+e chia hết 11

b+d+g chia hết 11

Phạm NGọc Thắng
2 tháng 2 2017 lúc 21:24

mình làm đc rùi

chỉ còn kết luận thôi

nguyen van minh duc
Xem chi tiết
Vuong Song Toan
20 tháng 5 2016 lúc 9:22

Ta có abcdeg=10000ab+100cd+eg=9999ab+99cd+(ab+cd+eg)

Mà 9999ab chia hết cho 11; 99cd chia hết cho 11;(ab+cd+eg) chia hết cho 11

\(\Rightarrow\)abcdeg chia hết cho 11 (đpcm)

LÊ THỊ HÀ VY
Xem chi tiết
Trần Nguyễn Xuân Phát
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Lê Văn Trường
25 tháng 12 2021 lúc 20:18

đúng rùi

Khách vãng lai đã xóa
Vũ Hà  Thư
Xem chi tiết