Cho tam giác ABC vuông tại A. I là tâm đường tròn nội tiếp tam giác. M là trung điểm của AC/ Đường thẳng MI cắt AB tại N. E là trung điểm của IN. F là điểm trên BC sao cho FC = 3 FB. EF cắt AB tại D và cắt AI tại K. Chwusng minh tam giác ADK cân
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giáo ABC, các tiếp điểm trên BC, CA, AB lần lượt là D,E,F. Gọi M là trung điểm của AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của tam giác ABC tại P. Chứng minh tam giác ANP là tam giác cân.
Cho tam giác ABC vuông tại A. Gọi I là tâm đường tròn nội tiếp tam giác ABC, các tiếp điểm BC, CA, AB lần lượt là D, E, F. Gọi M là trung điểm AC, đường thẳng MI cắt cạnh AB tại N, đường thẳng DF cắt đường cao AH của △ABC tại P.
Chứng minh rằng tam giác APN là tam giác cân
(Đề hay quá!)
Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).
Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).
Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).
Áp dụng định lí Thales liên tục ta có:
\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).
Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.
ê,chứng minh AI,DF,MX đồng quy kiểu gị ?
1) cho tam giác vuông ABC đường cao AH .gọi AD ;AE là phân giác các góc BAH và góc CAH .chứng minh rằng đường tròn nội tiếp tam giác BCA trùng với đường tròn ngoại tiếp tam giác ADE
2)cho tam giác ABC vuông tại A;gọi I là tâm đường tròn nội tiếp tam giác ABC ;các tiếp điểm trên BC;CA;AB lần lượt là D,E,F.gọi M là trung điểm của AC ,đường thẳng MI cắt các cạnh AB tại N ,đường thẳng DF cắt đường cao AH tại P .cmr tam giác APN cân
Cho tam giác ABC, góc A = 90 độ. I là tâm đường tròn nội tiếp tam giác ABC. Đường tròn I tiếp xúc BC, CA, AC tại D, E, F. M là trung điểm AC. MI cắt AB tại N. Tính độ dài AN khi AB =9, AC = 16
tam giác ABC vuông tại A
I là tâm đường tròn nội tiếp tam giác ABC; các tiếp điểm trên BC, CA,AB lần lượt là D,E,F
M là trung điểm AC
MI cắt AB tại N
DF cắt đường cao AH của tam giác ABC tại P
CMR tam giác ANP cân
HD: AN =AP=\(\frac{BC+AB-AC}{2}\)
Cho nửa đường tròn tâm O đường kính AB, điểm C thuộc nửa (O) , D là điểm thuộc đường kính AB. Qua D kẻ đường thẳng vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến tại C của nửa đường tròn cắt EF tại I. Chứng minh: a) I là trung điểm EF b) Đường thăng OC là tiếp truyến của đường tròn ngoại tiếp tam giác ECF.
Một số bài toán hay về tâm nội tiếp:
Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.
Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.
Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.
Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.
chị gisp em bài này
Giai giup cau c va d bai nay voi
Cho tam giác ABC nhọn (AB<AC).Vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E và F, CE cắt BF tại H
a) Chứng minh AH vuông góc BC tại D, AEHF nội tiếp
b) CHứng minh H là tâm đường tròn ngoại tiếp tam giác EFD
c) Gọi K là giao điểm của EF và AD, I là trung điểm của AH. CHứng minh KI.KD=KH.KA
d) Gọi M là trung điểm BH. MK cắt đường tròn ngoại tiếp tam giác IEF tại N. CHỨng minh ANHM nội tiếp