15/y-9=20/y-12=40/z-24
Tìm y,z biet x.y= 1200
Tìm 3 số x, y, z biết \(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\) và x.y = 1200.
15/(y-9) = 20/(y-12) = 40/(z-24)
Tìm y, z biet x*z=1200
Tìm x,y,z biết:
\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\) và x.y=1200
\(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)
\(\Rightarrow\dfrac{x-9}{15}=\dfrac{y-12}{20}=\dfrac{z-24}{40}=k\)
\(\Rightarrow\left(15k+9\right)\left(20k+12\right)=1200\)
\(\Rightarrow3.4\left(5k+3\right)\left(5k+3\right)=1200\)
\(\Rightarrow\left(5k+3\right)\left(5k+3\right)=1200:3:4\)
\(\Rightarrow\left(5k+3\right)^2=100\)
\(\Rightarrow\left[{}\begin{matrix}5k+3=10\\5k+3=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=\dfrac{7}{5}\\k=\dfrac{-13}{5}\end{matrix}\right.\)
+) Với \(k=\dfrac{7}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}.15+9\\y=\dfrac{7}{5}.20+12\\z=\dfrac{7}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=80\end{matrix}\right.\)
+) Với \(k=\dfrac{-13}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-13}{5}.15+9\\y=\dfrac{-13}{5}.20+12\\z=\dfrac{-13}{5}.40+24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-30\\y=-40\\z=-80\end{matrix}\right.\)
Vậy ................................
Chúc bạn học tốt!
Tìm x,y,z
\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\)và x.y = 1200
Tìm x , y , z biết:
\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\)và x.y = 1200
\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) và x.y =1200
\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\Rightarrow\frac{x-9}{y-12}\)
\(\Rightarrow\frac{3}{4}=\frac{x-9}{y-12}=\frac{9}{12}=\frac{x-9}{y-12}=\frac{x-9+9}{y-12+12}\)\(=\frac{x}{y}=\frac{xy}{y^2}=\frac{x^2}{xy}\)
Từ \(\frac{3}{4}=\frac{xy}{y^2}\Rightarrow\frac{3}{4}=\frac{1200}{y^2}\Rightarrow y^2=1200\cdot\frac{4}{3}=20^2\Rightarrow y=\pm40\)
Nếu y=40 => x= 1200: 40 = 30Mà \(\frac{15}{x-9}=\frac{40}{z-24}\Rightarrow z=80\)
Nếu y = -40 => x = 1200:(-40) = - 30Mà \(\frac{15}{x-9}=\frac{40}{z-24}\Rightarrow z=-80\)
Vây (x , y , z ) = ( 30, 40, 80); ( - 30; -40; -80)
tìm các số x,y,z, biết:
a) \(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\)và x.y=1200
\(\frac{15}{x-9}=\frac{20}{y-12}\Rightarrow\frac{x-9}{15}=\frac{y-12}{20}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\Rightarrow\frac{x^2}{15^2}=\frac{x}{15}.\frac{y}{20}=\frac{1200}{300}=4=2^2\Rightarrow x^2=2^2.15^2=30^2\)
\(\Rightarrow x=30\text{ hoặc }x=-30\)
+TH1: x = 30
\(\frac{y}{20}=\frac{x}{15}\Rightarrow y=\frac{20.x}{15}=\frac{20.30}{15}=40\)
\(\frac{40}{z-24}=\frac{15}{30-9}=\frac{5}{7}\Rightarrow z=\frac{40.7}{5}+24=80\)
+TH2: x = -30
\(\frac{y}{20}=\frac{x}{15}=-\frac{30}{15}=-2\Rightarrow y=-2.20=-40\)
\(\frac{40}{z-24}=\frac{15}{-30-9}=-\frac{15}{3}\Rightarrow z=\frac{-3.40}{15}+24=16\)
Tìm x, y,z biet: \(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) va x . y = 1200
\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{24}{z-24}\Rightarrow\)\(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}=k\)
Do x . y = 1200 => ( 15k + 9) ( 20k + 12) = 1200
3(5k+3).4(5k+3) = 1200
12 ( 5k+3)2 = 1200
( 5k+3)2 = 100 hoặc ( 5k+3)2 = -100
=> 5k+3 = 10 hoặc 5k+3 = -10
=> 5k = 7 hoặc 5k = -13
=> k = 7/5 hoặc k = -13/5
Vậy
\(\hept{\begin{cases}\text{x = 15 . \frac{7}{5}+9 = 30}\\y=20.\frac{7}{5}+12=40\\z=40.\frac{7}{5}+24=80\end{cases}}\)\(\hept{\begin{cases}x=15.\frac{7}{5}+9=30\\y=20.\frac{7}{5}+12=40\\z=40.\frac{7}{5}+24=80\end{cases}}\)hoặc\(\hept{\begin{cases}x=15.\frac{-13}{5}+9=-30\\y=20.\frac{-13}{5}+12=-40\\z=40.\frac{-13}{5}+24=-80\end{cases}}\)
Tìm x, y ,z biết :\(\frac{15}{x-9}=\frac{20}{y-15}=\frac{40}{z-24}\) và x.y=1200