cho â ,b ,c khác 0 và 1/a + 1/b +1/c = 1 / a +b+c cmr (a+b)(b+c)(c+a)=0
Cho a/c=a-b/b-c (a,c khác 0. a-b khác 0; b-c khác 0).CMR 1/a + 1/a-b=1/b-c -1/c
\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)
\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)
Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM
Cho a,b,c khác 0 và 1/a + 1/b + 1/c = 1/a+b+c. CMR : (a+b)(b+c)(a+c)=0
Cho a,b,c khác 0 và a+b+c=0. CMR 1/b²+c²-a² +1/c²+a²-b² +1/a²+b²-c²
b1: cho 1/c=1/2*(1/a+1/b ) với a,b,c khác 0 và b khác c . CMR: a/b = a-c/ c-b
Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath
tại sao con cò lại bé bé
cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)
Vậy đẳng thức được chứng minh
Cho a,b,c là ba số đôi một khác nhau và 1/b-c +1/c-a +1/a-b = 0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0
Cho a,b,c là ba số đôi một khác nhau và 1/b-c + 1/c-a + 1/a-b=0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0
Cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
Cho ba số a,b,c đôi một khác nhau và khác 0 thỏa mãn : 1/c + 1/a-b = 1/a - 1/b-c. CMR: b = a+c
Cho a/c=a-b/b-c ( a; c khác 0; a khác b; b khác c )
CMR 1/a+1/a-b=1/b-c-1/c