\(\left(3,5-2x\right).3\dfrac{1}{3}\)=\(\dfrac{22}{3}\)
\(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2x-1}}+2\left(y+1\right)=\dfrac{22}{3}\\\dfrac{1}{\sqrt{2x-1}}-3\left(y-2\right)=\dfrac{1}{3}\end{matrix}\right.\)
ĐKXĐ: \(x>\dfrac{1}{2}\)
Đặt \(\dfrac{1}{\sqrt{2x-1}}=z>0\) ta được:
\(\left\{{}\begin{matrix}4z+2\left(y+1\right)=\dfrac{22}{3}\\z-3\left(y-2\right)=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4z+2y=\dfrac{16}{3}\\z-3y=-\dfrac{17}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}z=\dfrac{1}{3}\\y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x-1}}=\dfrac{1}{3}\\y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{2x-1}=3\\y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-1=9\\y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
\(\left(\dfrac{3}{2}-\dfrac{5}{11}-\dfrac{3}{13}\right)\left(2x-x2\right)=\left(-\dfrac{3}{4}+\dfrac{5}{22}+\dfrac{3}{26}\right)\)
\(\Leftrightarrow\dfrac{233}{286}\left(2x-x^2\right)=\dfrac{-233}{572}\\ \Leftrightarrow x\left(2-x\right)=\dfrac{-1}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\2-x=\dfrac{-1}{2}\Leftrightarrow x=\dfrac{5}{2}\end{matrix}\right.\)
\(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).\)\(\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)
\(\left(\dfrac{7}{8}-\dfrac{3}{4}\right)\cdot\dfrac{1}{3}-\dfrac{2}{7}\cdot\left(3,5\right)^2\)
\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right)\cdot\dfrac{1}{3}-\dfrac{2}{7}\cdot\dfrac{49}{4}\)
\(=\dfrac{1}{8}\cdot\dfrac{1}{3}-\dfrac{7}{2}\)
\(=\dfrac{1}{24}-\dfrac{7}{2}\)
\(=\dfrac{1}{24}-\dfrac{84}{24}\)
\(=-\dfrac{83}{24}\)
#データネ
`(7/8-3/4)xx1/3-2/7xx(3,5)^2`
`=(7/8-6/8)xx1/3-2/7xx12,25`
`=1/8xx1/3-2/7xx12,25`
`=1/24-7/2`
`=1/24-84/24`
`=-83/24`
\(A=-5^{22}-\left\{-222-\left[-122-\left(100-5^{22}\right)+2022\right]\right\}\)
\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)
\(C=\dfrac{5.4^6.9^4-3^9.\left(-8\right)^4}{4.2^{13}.3^8+2.8^4.\left(-27\right)^3}\)
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
Bài 2: Giải các phương phương trình sau:
a) \(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{4}\)=\(\dfrac{3\left(x+1\right)}{5}\)+6
b) \(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Mik đang cần gấp nha!!❤
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
Tìm x, biết:
a) \(\left(-\dfrac{1}{3}\right)^3\) .x = \(\dfrac{1}{81}\)
b) 22 . 16 >2x > 42
c) 9.27 < 3x < 243
Lời giải:
a.
$(\frac{-1}{3})^3.x=\frac{1}{81}=(\frac{-1}{3})^4$
$\Rightarrow x=(\frac{-1}{3})^4: (\frac{-1}{3})^3=\frac{-1}{3}$
b.
$2^2.16> 2^x> 4^2$
$\Rightarrow 2^2.2^4> 2^x> (2^2)^2$
$\Rightarrow 2^6> 2^x> 2^4$
$\Rightarrow 6> x> 4$
$\Rightarrow x=5$ (với điều kiện $x$ là số tự nhiên nhé)
c.
$9.27< 3^x< 243$
$3.3^3< 3^x< 3^5$
$\Rightarrow 3^4< 3^x< 3^5$
$\Rightarrow 4< x< 5$
Với $x$ là stn thì không có số nào thỏa mãn.
1 tinh
a,\(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
b,4.\(\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
c,\(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
d,\(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\left(\dfrac{-60}{132}+\dfrac{42}{132}-\dfrac{-16}{132}-\dfrac{15}{132}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\dfrac{-17}{132}:\left(\dfrac{381}{22}-\dfrac{865}{22}\right)\)
\(=\dfrac{-17}{132}:\left(-22\right)\)
\(=\dfrac{-17}{132}.\dfrac{1}{-22}\)
\(=\dfrac{-17}{-2904}=\dfrac{17}{2904}\)
4,\(\dfrac{x+1}{3}\)+\(\dfrac{3\left(2x+1\right)}{4}\)=\(\dfrac{2x+3\left(x+1\right)}{6}\)+\(\dfrac{7+12x}{12}\)
5,\(\dfrac{2x}{3}\)+\(\dfrac{2x-1}{6}\)=4-\(\dfrac{x}{3}\)
6,\(\dfrac{x-1}{2}\)+\(\dfrac{x-1}{4}\)=1-\(\dfrac{2\left(x-1\right)}{3}\)
4, \(\Leftrightarrow4x+4+9\left(2x+1\right)=4x+6\left(x+1\right)+7+12x\)
\(\Leftrightarrow22x+13=22x+13\)vậy pt có vô số nghiệm
5, \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\Rightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow8x=25\Leftrightarrow x=\dfrac{25}{8}\)
6, \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\Rightarrow6x-6+3x-3=12-8\left(x-1\right)\)
\(\Leftrightarrow9x-9=20-8x\Leftrightarrow17x=29\Leftrightarrow x=\dfrac{29}{17}\)
giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)
\(a,\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1};ĐKXĐ:x\ne\pm\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{2x-1}-\dfrac{2x-1}{2x+1}+1=0\\ \Leftrightarrow\dfrac{3\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}+\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}=0\\ \Rightarrow3\left(2x+1\right)-\left(2x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow6x+3-\left(4x^2-4x+1\right)+\left(4x^2-1\right)=0\\ \Leftrightarrow6x+3-4x^2+4x-1+4x^2-1=0\\ \Leftrightarrow10x+1=0\\ \Leftrightarrow10x=-1\\ \Leftrightarrow x=-\dfrac{1}{10}\)
Vậy \(x\in\left\{-\dfrac{1}{10}\right\}\)