cho P(x) = ax^2 + bx + c và 5a - b + c = 0 .cmr: P(1) × P(-3) bé hơn hoặc bằng 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho đa thức Q(x) =ax^2+bx+c . Chứng minh rằng : Nếu 5a-b+c=0 thì Q(-3).Q(1) bé hơn hoặc bằng 0.
Q(-3)=9x-3b+x ;Q(1)=a+b+c
lấy Q(-3)+Q(1)=10a-2b+2c=2(5a-b+c)=2.0=0(vì 5a-b-c=0)
mà 0=0=)Q(-3)+Q(1)< hoặc =0 =)Q(-3)và Q(1)đối nhau
mà 2 số đối nhau luôn có 1 số âm và 1 số dương
mà số âm. số dương bằng số âm mà số âm luôn bé hơn 0 nên =)Q(-3).Q(1) < hoặc = 0
Cho đa thức A(x)=ax^2+bx+c. Biết b=5a+c. CMR: A(1).A(3) nhỏ hơn hoặc bằng 0.
cho đa thức F(x)=ax^2+bx+c biết 5a+b+2c
cm rằng F(2) *F(-1) bé hơn hoặc bằng 0
cho đa thức f(x) = ax^2 + bx + c biết 5a + b + 2c = 0
CMR f(-1) . f(2) nhỏ hơn hoặc = 0
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....
#)Giải :
Ta có f(2) = 4a + 2b + c
f(-1)= a - b + c
=> f(2) + f(-1) = 4a + 2b + c + a - b + c
= 5a + b + 2c
Mà 5a + b + 2c = 0 => f(2) + f(-1) = 0 => f(2) = f(-1)
=> f(-1).f(2) ≤ 0 ( đpcm )
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath
Cho đa thức f(x)=ax^2+bx+c cmr: nếu 25a-7b+2c=0 thì f(3)*f(4) bé hơn hoặc bằng 0.
cho Q(x) bằng ax^2 + bx + c. Biết 5a+b+2c bằng 0
Chứng minh Q(2).Q(-1) bé hơn hoạc bằng 0
Bài làm:
Ta có: \(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)
Ta có: \(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)
=> đpcm
Học tốt!!!!
Cho f(x)=ax^2+bx+c biết 5a+b+2c =0
Cm :f(2)xf(-1) nhỏ hơn hoặc bằng 0
cho đa thức f{x}=ax^2+bx+c . C/M nếu 5a-b+2c=0 thì f{2}.f{1} nhỏ hơn hoặc bằng 0
a) Tìm f(x) biết:
2f(x) + f(1/2) = 2x+1
b) Cho P(x)= ax2+bx+c
C/m: P(-1) . P(-2) bé hơn hoặc bằng 0 biết 5a-3b+2c=0