Tập nghiệm của phuong trình |x - 1| = -2 là:
A. Vô số nghiệm
B. ∅
C. {-3}
D. {3}
Câu 3. Phương trình vô nghiệm có tập nghiệm là?
A. S = f B. S = 0 C. S = {0} D. S = {f}
Câu 4. Điều kiện xác định của phương trình là?
A. x ≠ 2 và B. x ≠ -2 và C. x ≠ -2 và x ≠ 3 D. x ≠ 2 và
Câu 5. Cho AB = 3cm, CD = 40cm. Tỉ số của hai đoạn thẳng AB và CD bằng?
A. B. C. D.
Cho hệ phuong trình \(\left\{{}\begin{matrix}x+my=4\\x-2y=3\end{matrix}\right.\) .Tìm các giá trị của tham số m để hệ phương trình đã cho :
a) Có nghiệm duy nhất
b) Vô nghiệm :
c) Vô nghiệm:
chỉ có vô nghiệm hoặc vô số nghiệm nhé bạn
vô nghiệm khi x=-2
vô số nghiệm khi x khác -2 nhé
Số nghiệm của phương trình l g ( x 2 - 6 x + 7 ) = l g ( x - 3 ) là
A. 2 B. 1
C. 0 D. Vô số
Số nghiệm của phương trình lg( x 2 - 6x + 7) = lg(x - 3) là
A. 2 B. 1
C. 0 D. Vô số
Cho phương trình ( a mũ 2 + mũ 2 + 3 ) x- 1 = a mũ 2 ( x -1 ) + 3ax, a là tham số. Tìm để:
a, Phương trình đã nhận x = -1 là nghiệm
b, Phương trình đã cho có một nghiệm duy nhất là dương
c, Phương trình đã cho vô nghiệm
d, Phương trình đã cho vô số nghiệm
32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)
Cho phương trình a( x + 2) - a mũ 2 - 2= 0, a là tham số. Tìm a để :
a, Phương trình đã cho nhận x = 3 là nghiệm
b, Phương trình đã cho có một nghiệm duy nhất là âm
c, Phương trình đã cho vô nghiệm
d, Phương trình đã cho vô số nghiệm
a. để phương trình nhận x=3 là nghiệm ta có
\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)
b. Để phương trình có duy nhất 1 nghiệm âm ta có :
\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)
c. Để phương trình đã cho vô nghiệm thì a=0
d. Phương trình đã cho không thể có vô số nghiệm thực.
Trong các mệnh đề sau
a. Phương trình 2 - x = x có nghiệm x = – 2.
b. 7 - 4 3 = 3 - 2 .
c. 2 x - 1 x - 2 = x + 1 x - 2 vô nghiệm.
d. ∀ x ∈ ℝ , 5 x 2 - 4 5 x + 3 ⩽ - 1 .
Số mệnh đề đúng là:
A. 4.
B. 2
C. 3
D. 1
Đáp án: D
2 - x = x nên x > 0 kết hợp đkxđ x ≤ 2 khi đó phương trình có nghiệm thỏa mãn 0 < x ≤ 2 ⇒ a sai.
7 - 4 3 = 2 - 3 . ⇒ b sai
2 x - 1 x - 2 = x + 1 x - 2 ⇒ 2x – 1 = x + 1 ( x ≠ 2 ) ⇔ x = 2 (loại).
Vậy phương trình vô nghiệm. ⇒ c đúng.
5 x 2 - 4 5 x + 3 < - 1 ⇔ 5 x 2 - 4 5 x + 4 < 0 ⇔ 5 x - 2 2 < 0 (vô lí) ⇒ d sai.
có 1 mệnh đề đúng.
bài tập: cho hệ phương trình \(\left\{{}\begin{matrix}x+my=1\\\\mx+y=1\end{matrix}\right.\) (m là tham số )
a, Giaỉ hệ phương trình khi m=1,m=-1,m=2
b,Tìm m để hệ phương trình đã cho
b.1, có nghiệm duy nhất
b.2,vô nghiệm
b.3,có vô số nghiệm
c,Tìm m để hệ có nghiệm duy nhất \(x+2y=3\)
thankyou
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)
Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.
Khi $m=-1$ thì hệ trở thành:
\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)
Vậy HPT vô nghiệm
Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)
Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........
b)
PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:
$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$
b.1
Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$
$\Leftrightarrow m\neq \pm 1$
b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$
$\Leftrightarrow m=-1$
b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$
$\Leftrightarrow m=1$
c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$
$x=1-my=\frac{1}{m+1}$
Thay vào $x+2y=3$ thì:
$\frac{3}{m+1}=3\Leftrightarrow m=0$