Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thanh Hà
Xem chi tiết
LaYoLa
Xem chi tiết
Witch Rose
4 tháng 7 2019 lúc 20:50

\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0.\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(y+x^2y-x-xy^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\left(lđ\forall x,y\ge1\right)\)

Dấu "=" xra khi x=y=1

Ánh Trần
Xem chi tiết
Xem chi tiết
Kudo Shinichi
12 tháng 9 2019 lúc 18:28

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)  ( 1 )

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)     ( 2 )

\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 ) 

( Dấu " = " xảy ra khi x = y ) 

Chúc bạn học tốt !!!

Hanh Nguyen
Xem chi tiết
Đặng Xuân Hiếu
4 tháng 4 2015 lúc 22:10

Câu a) 

Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b

Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1

Câu b) Áp dụng BĐT Bunhiacopxki ta có

(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2

Dấu "=" xảy ra <=> x = y

Trần Thị Loan
4 tháng 4 2015 lúc 22:19

câu1 : cần sửa lại là A + B2 \(\ge\frac{1}{2}\)

Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)

<=> A + B + 2A.B \(\le\) 2. (A + B2)

<=> 0 \(\le\) A + B - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng

b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm

Minh Nguyễn Cao
Xem chi tiết
Hạ Khuê
Xem chi tiết
NGUYỄN THẾ HIỆP
10 tháng 2 2017 lúc 17:12

Đề: \(1\le y\le x\le30\)GTLN \(P=\frac{x+y}{x-y}\)

Giải: Ta có:  \(\frac{x}{y}\)>1

Ta có \(P=\frac{x+y}{x-y}\)\(=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}-1+1=\frac{2}{\frac{x}{y}-1}+1\)

Để P Lớn nhất =>  \(\frac{2}{\frac{x}{y}-1}\) lớn nhất => \(\frac{x}{y}-1\)nhỏ nhất => \(\frac{x}{y}\)nhỏ nhất 

Mà x>y nên đặt x=y+d

\(\Rightarrow\frac{x}{y}=\frac{y+d}{y}=1+\frac{d}{y}\), nên để  \(\frac{x}{y}\)nhỏ nhất thì d nhỏ nhất và y lớn nhất có thể nên d=1 và y=29

Hay \(\hept{\begin{cases}x=30\\y=29\end{cases}}\)

GTLN P=\(\frac{29+30}{30-29}=59\)

Nguyễn Tiến Hiệp
Xem chi tiết
08-nguyễn anh huân
Xem chi tiết
Nguyễn Ngọc Huy Toàn
17 tháng 5 2022 lúc 20:39

Áp dụng BĐT AM-GM,ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4\left(x+y\right)}{x+y}\)

\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\) ( đfcm )

 

 

 

hacker nỏ
17 tháng 5 2022 lúc 20:50

Có: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\)\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)\(\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)

\(\dfrac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{xy\left(x+y\right)}\)\(\left(x+y\right)^2\ge4xy\)\(x^2+2xy+y^2\ge4xy\)

\(x^2-4xy+2xy+y^2\ge0\)\(x^2-2xy+y^2\ge0\)\(\left(x-y\right)^2\ge0\) luôn đúng