CMR nếu n ∈ Z thì \(\dfrac{n^5}{5}+\dfrac{n^3}{3}+\dfrac{7n}{15}\) là số nguyên
CMR \(A=\dfrac{n^3}{3}+\dfrac{n^5}{5}+\dfrac{7n}{15}\)ϵ Z với nϵZ
a)cmr:
\(\dfrac{n^5}{5}=\dfrac{n^3}{3}=\dfrac{7n}{15}\) là số nguyên với mọi n \(\in Z\)
b)cmr:với n chẵn thì \(\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\) là số nguyên
\(\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}\left(n\Rightarrow a\text{ }nha\right)=\frac{a^5}{5}+\frac{a^3}{3}+\frac{7a}{15}=\frac{a^5}{5}+\frac{a^3}{3}+\frac{15a-5a-3a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+\frac{15a}{15}=\frac{a^5-a}{5}+\frac{a^3-a}{3}+a;a^k-a⋮k\left(a\in Z;1< k\in N\right)\left(fecmat\right)\Rightarrow\left\{{}\begin{matrix}a^5-a⋮5\\a^3-a⋮3\end{matrix}\right.\Rightarrow dpcm\)
\(\frac{a}{12}+\frac{a^2}{8}+\frac{a^3}{24}\left(n\Rightarrow a\text{ nha}\right)=\frac{a^3+3a^2+2a}{24}=\frac{\left(a+2\right)\left(a+1\right)a}{24}.a=2k\left(k\in N\right)\Rightarrow;\frac{a\left(a+1\right)\left(a+2\right)}{24}=\frac{2k.\left(2k+1\right)\left(2k+2\right)}{24}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\Leftrightarrow k\left(k+1\right)\left(2k+1\right)⋮6\)
Bài 1: CMR với n ϵ Z các phân số sau tối giản
a) \(\dfrac{n}{2n+1}\)
b) \(\dfrac{n+5}{n+6}\)
c) \(\dfrac{n+1}{2n+3}\)
d) \(\dfrac{3n+2}{5n+3}\)
e)\(\dfrac{1}{7n+1}\)
Các bạn giải chi tiết cho mình nhé. Thanks all !
chứng minh: \(\dfrac{n^5}{5}+\dfrac{n^3}{3}+\dfrac{7n}{15}\) \(\in Z\)với \(\forall n\in Z\)
chứng minh: \(\dfrac{n^5}{5}+\dfrac{n^3}{3}+\dfrac{7n}{15}\) \(\in Z\)với \(\forall n\in Z\)
Bài 4. Cho n là số nguyên. Chứng minh rằng \(\dfrac{n^5}{5}+\dfrac{n^3}{3}+\dfrac{7\times n}{15}\) có giá trị nguyên.
CMR với n thuộc Z thì giá trị của b là một số nguyên
\(B=\dfrac{n^4}{24} +\dfrac{n^3}{4}+ \dfrac{11n^2}{24}+ \dfrac{n}{4}\)
\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\)
\(B=\frac{n^4+6n^3+11n^2+6n}{24}\)
\(B=\frac{n^4+2n^3+4n^3+8n^2+3n^2+6n}{24}\)
\(B=\frac{n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)}{24}\)
\(B=\frac{\left(n^3+n^2+3n^2+3n\right)\left(n+2\right)}{24}\)
\(B=\frac{n\left(n+1\right)\left(n+3\right)\left(n+2\right)}{24}\)
Lập luận là ra
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
CMR: Nếu \(a;b;c\) là các số khác 0 thỏa mãn :\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}thì\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)
\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)
\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)
\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)
\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)
\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)