Chứng minh: Cos 5a - 2Cos a(Cos 4a - Cos 2a)= Cos a
Chứng minh: ( cos a - cos 5a ):( sin 4a - sin 2a ) = 2sin a
Ai giúp mk tick cho
Đề của bạn bị sai đề đúng phải là sian 4a+sin 2a
Ta sẽ sử dụng công thức biến đổi tổng thành tích :(2sin2a sin3a) / (2sin3a cos2a) như vậy khi giải tiếp ra ta sẽ được 2sina
(cosa - cos5a):(sin4a - sin2a) không thể bằng 2sina
(cosa - cos5a):(sin4a + sin2a) mới bằng 2sina
chứng minh rằng cos^4a - sin^4a+1=2cos^2a
\(\cos^4\alpha-\sin^4\alpha+1\\ =\left(\sin^2\alpha+\cos^2\alpha\right)\left(-\sin^2\alpha+\cos^2\alpha\right)+\left(\sin^2\alpha+\cos^2\alpha\right)\\ =-\sin^2\alpha+\cos^2\alpha+\sin^2\alpha+\cos^2\alpha=2\cos^2\alpha\)
\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)
\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a=2cos^2a\)
Vậy ta có đpcm
chứng minh rằng sin^4a-cos^4a+2cos^2a=1
chứng minh rằng sin^4a-cos^4a+2cos^2a=1
chứng minh rằng sin^4a-cos^4a+2cos^2a=1 giúp mình với
Chứng minh rằng
a, \(tg^2a+1=\frac{1}{cos^2a}\)
b, \(cotg^2a+1=\frac{1}{sin^2a}\)
c, \(cos^4a-sin^4a=2cos^2a-1\)
a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)
b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)
c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)
Chứng minh (sin^2a-cos^2a+cos^4a) : (cos^2a-sin^2a+sin^4a) = tan^4a
Tinh cac gia tri bieu thuc sau:
A= (cota+tana)/(cota-tana) voi sina=3/5
B= (sin^2a-cos^2a)/(sin^2a-3cos^2a) voi cota=-1/3
C1=sin^2a+2cos^2a va C2= sin^4a-cos^4a voi tana=-2
Ai giup minh voii. Minh cam on nhieuu!
\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)
\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)
\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)
\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)
\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)
\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)
chứng minh
a) \(\frac{sin^2a+2cos^2a-1}{cot^2a}=sin^2a\)
b) \(\frac{1-sin^2a.cos^2a}{cos^2a}-cos^2a=tan^2a\)
c) \(\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=tan^6a\)
Lời giải:
a)
\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)
b)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)
c)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)
\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)