Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
soái cưa Vương Nguyên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2018 lúc 17:31

Đáp án cần chọn là: C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2019 lúc 18:14

Đáp án cần chọn là: D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2018 lúc 14:19

b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố

n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3

Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.

Vậy với n = 0 thì 3n + 6 là số nguyên tố.

Hoàng Khánh Linh
Xem chi tiết
KCLH Kedokatoji
3 tháng 3 2020 lúc 11:29

\(3n+6⋮3\)

Số nguyên tố duy nhất chia hết cho 3 là 3

\(\Rightarrow3n+6=3\Leftrightarrow3n=-3\Leftrightarrow n=-1\)  . Vậy n=1

Khách vãng lai đã xóa
KCLH Kedokatoji
3 tháng 3 2020 lúc 11:31

Mình thiếu, -1 không là số tự nhiên nên không có số n nào thoả mãn đề bài

Khách vãng lai đã xóa
Nguyễn Cường Thịnh
3 tháng 3 2020 lúc 11:46

ko có n thỏa mãn đề bài mà bạn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 3 2019 lúc 5:02

a)

a b ¯ + b a ¯ = 10 a + b + 10 b + a = 11 a + 11 b = 11 ( a + b ) ⋮ 11

b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố

n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3

Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.

Vậy với n = 0 thì 3n + 6 là số nguyên tố.

Tâm Nguyễn
Xem chi tiết
Không Tên
7 tháng 8 2018 lúc 21:20

a)  \(A=n^2+18n=n\left(n+18\right)\)

A là số nguyên tố khi:   \(\orbr{\begin{cases}n=1\\n+18=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=1\\n=-17\end{cases}}\)

Do n là số tự nhiên nên  \(n=1\)

thử lại:  \(n=1\)thì  \(A=19\)là số nguyên tố

b)  \(B=5^n+10\)

Do n là số tự nhiên nên \(B\ge10\)

Nhận thấy: \(5^n\)\(⋮\)\(5\)và   \(10\)\(⋮\)\(5\)

suy ra:  \(B\)\(⋮\)\(5\)

Vậy với mọi n là số tự nhiên thì B là hợp số

Công Nghiêm Chí
Xem chi tiết
Cấn Thị Vân Anh
27 tháng 5 2022 lúc 21:12

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Nguyễn Thu Trang
Xem chi tiết