chứng minh định lí Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông.
Cho định lí: Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông
-Chứng minh định lí trên
Cho 2 góc xOy và yOz kề bù .
Om ; On lần lượt là tia phân giác của 2 góc đó
\(\Rightarrow\begin{cases}\widehat{O_1}=\widehat{O_2}=\frac{1}{2}.\widehat{xOy}\\\widehat{O_3}=\widehat{O_4}=\frac{1}{2}.\widehat{yOz}\end{cases}\)
\(\Rightarrow\widehat{O_2}+\widehat{O_3}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.180^0=90^0\)
=> Đpcm
* Vẽ hình: Vẽ hình hơi xấu chút!
* Viết giả thiết, kết luận:
GT: - Góc xOz và góc yOz là hai góc kề bù
- Ot là tia phân giác của góc xOz
- Ot' là tia phân giác của góc yOz
KL: Góc tot' là 1 góc vuông
* Chứng minh:
Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)
Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)
Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)
Vì góc xOz và góc yOz là 2 góc kề bù mà
Ot là tia phân giác xOz
Ot' là tia phân giác yOz
=> Tia Oz nằm giữa hai tia Ot và Ot' nên:
Góc tOt' = góc tOz + góc t'Oz = 1/2 . góc xOz + 1/2 . góc yOz = 1/2 . (góc xOz + góc yOz) = 1/2 . 180 độ = 90 độ
Vậy tOt' là 1 góc vuông.
Chứng minh :
\(\widehat{mOz=\frac{1}{2}}\widehat{xOz}\) \(\left(1\right)\) ( vì Om là hai tia phân giác của \(\widehat{xOz}\) )
\(\widehat{zOn}=\frac{1}{2}\widehat{zOy}\) \(\left(2\right)\) ( vì On là hai tia phân giác của \(\widehat{zOy}\) )
Từ \(\left(1\right)\) và \(\left(2\right)\) , ta có :
\(\widehat{mOz}+\widehat{zOn}=\frac{1}{2}.\left(\widehat{xOz}+\widehat{zOy}\right)\) \(\left(3\right)\)
Vì tia \(Oz\) nằm giữa hai tia \(Om,On\) và vì \(\widehat{xOz}\) và \(\widehat{zOy}\) kề bù \(\left(gt\right)\)
Nên từ \(\left(3\right)\) \(\Rightarrow\widehat{mOn}=\frac{1}{2}.180^0\)
Hay \(\widehat{mOn}=90^0\)
Chứng minh rằng góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông.
chứng minh định lí:
góc tạo bởi 2 tia phân giác của hai góc kề bù bằng 90 độ
Ta có: \(\widehat{xOm}=\widehat{mOz}=\frac{\widehat{xOz}}{2}\) (vì Om là tia phân giác của xOz)
\(\widehat{zOn}=\widehat{nOy}=\frac{\widehat{yOz}}{2}\) (vì On là tia phân giác của yOz)
Có: \(\widehat{mOn}=\widehat{mOz}+\widehat{zOn}=\frac{\widehat{xOz}}{2}+\frac{\widehat{yOz}}{2}=\frac{\widehat{xOz}+\widehat{yOz}}{2}=\frac{180^o}{2}=90^o\)
=> Om _|_ On (đpcm)
mOz=12ˆxOzˆmOz=12^xOz^ (1)(1) ( vì Om là hai tia phân giác của xOzˆxOz^ )
zOnˆ=12zOyˆzOn^=12zOy^ (2)(2) ( vì On là hai tia phân giác của zOyˆzOy^ )
Từ (1)(1) và (2)(2) , ta có :
mOzˆ+zOnˆ=12.(xOzˆ+zOyˆ)mOz^+zOn^=12.(xOz^+zOy^) (3)(3)
Vì tia OzOz nằm giữa hai tia Om,OnOm,On và vì xOzˆxOz^ và zOyˆzOy^ kề bù (gt)(gt)
Nên từ (3)(3) ⇒mOnˆ=12.1800⇒mOn^=12.1800
Hay mOnˆ=900
Chứng minh định lí:
Hai tia phân giác của hai góc kề bù thì tạo thành góc vuông
Ta có \(A_1=A_2;A_3=A_4\)
Có \(A_1+A_2+A_3+A_4=180\)
\(\Rightarrow2\left(A_2+A_3\right)=180\)
\(\Rightarrow A_2+A_3=90\)
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Fan TFboys phải không?...mình cũng vậy
a, Cho định lí:Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông
-hãy cho biết giả thiết của định lí
-hãy cho bik kết luận của định lí
- chứng minh định lí trên
Cảm ơn các bn nhìu lắm!
chứng minh định lí : hai tia phân giác của hai góc kề bù vuông góc với nhau
Cho định lí : "Hai tia phân giác của hai góc kề bù tạo thành một góc vuông" (hình vẽ). Gỉa thiết, kết luận của định lí là:
A. Giả thiết: Cho góc bẹt AOB và tia OD. OE là phân giác góc BOD; OF là phân giác góc AOD.
Kết luận: OE⊥OF
B. Giả thiết: Cho góc bẹt AOB và tia OD. OE là phân giác góc BOF; OF là phân giác góc AOD.
Kết luận: OE⊥OA
C. Giả thiết: Cho góc bẹt AOB và tia OD.OE là phân giác góc BOD; OF là phân giác góc AOE.
Kết luận: OE⊥OF
D. Giả thiết: Cho góc bẹt AOBAOB và tia OD. OE là phân giác góc BOD; OF là phân giác góc AODAOD.
Kết luận: OB⊥OF
Đáp án C
Giả thiết: Cho góc bẹt AOB và tia OD. OE là phân giác góc BOD; OF là phân giác góc AOD.
Kết luận: OE⊥OF
Với hai góc kề bù ta có định lý sau: Hai tia phân giác của hai góc kề bù tạo thành một góc vuông
Hãy viết giả thiết và kết luận của định lí
Chứng minh định lí sau: Hai tia phân giác của một cặp góc kề bù thì vuông góc với nhau
Tham khảo nhé
Ta có góc \(\widehat{\text{xOz}}\) + \(\widehat{\text{zOy}}\) = 180\(^o\)(kề bù)
=> 2(\(\widehat{mOz}\) +\(\widehat{zOn}\)) = 180\(^o\)
=> \(\widehat{mOz}\) + \(\widehat{zOn}\) = 90\(^o\)
=>\(\widehat{mOn}\) = 90\(^o\) (vì \(\widehat{xOz}\), \(\widehat{xOz}\) kề nhau)
=> Tia Om vuông góc tia On
Vậy 2 tia phân giác của 1 cặp góc kề bù thì vuông góc với nhau