Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
do linh
21 tháng 4 2018 lúc 12:38

\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2+b^2-2ab\ge0\)\(\Leftrightarrow a^2+b^2\ge0\)

\(\Rightarrow\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}\)\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

alibaba nguyễn
21 tháng 4 2018 lúc 9:48

Sửa để: \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge0\)

do linh
21 tháng 4 2018 lúc 15:40

xl mk nhầm chỗ \(a^2+b^2\ge0\) phải là \(a^2+b^2\ge2ab\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2017 lúc 2:06

Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0

⇒  a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b ⇒ a 2 + b 2 ≥ 2 a b  (*)

a > 0, b > 0 ⇒ a.b > 0 ⇒ 1/ab > 0

Nhân hai vế của (*) với 1/ab ta có:

Bài 29 trang 53 SBT Toán 8 Tập 2 | Hay nhất Giải sách bài tập Toán 8.

ImNotFound
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 10:21

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 4 2018 lúc 9:02

Với a > 0, b > 0, c > 0, d > 0 ta có:

a < b ⇒ ac < bc (1)

c < d ⇒ bc < bd (2)

Từ (1) và (2) suy ra: ac < bd.

Trần Phương Thảo
Xem chi tiết
nguyễn hoàng mỹ dân
Xem chi tiết
Trần Thị Loan
10 tháng 7 2015 lúc 20:16

+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}

✓ ℍɠŞ_ŦƦùM $₦G ✓
10 tháng 7 2015 lúc 20:11

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(1

Vũ Nam Khánh
Xem chi tiết
Sakuraba Laura
5 tháng 3 2018 lúc 22:32

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

Arima Kousei
5 tháng 3 2018 lúc 22:25

CM :        1 < M < 2 

Nguyễn Hùng Sơn
5 tháng 3 2018 lúc 22:38

áp dụng t/c dãy tỉ số bằng nhau, ta có

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a+b+c}{a+b+b+c+c+a}=\frac{a+b+c}{\left(a+b+c\right)\cdot2}=\frac{ }{ }\)\(=\frac{1}{2}\)

=>Vậy nếu a;b;c>0->\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)ko phải là 1 số nguyên dương

k cho mk

Vũ Nam Khánh
Xem chi tiết
Hoàng Thị Thanh Huyền
2 tháng 4 2018 lúc 20:58

\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương

Neymar jr
2 tháng 4 2018 lúc 20:15

bài này mình làm rồi

tran kun
Xem chi tiết
Nguyễn AT
Xem chi tiết
Nguyễn Ngọc Anh Minh
7 tháng 4 2020 lúc 14:36

a/a+b>a/a+b+c

b/b+c>b/a+b+c

c/c+a>c/a+b+c

Cộng hai vế của biểu thức

M>(a+b+c)/(a+b+c)=1

Khách vãng lai đã xóa
Nguyễn Trọng lê Duy
8 tháng 4 2020 lúc 11:12

bạn làm đúng rồi nhé

chúc bạn học tốt@

Khách vãng lai đã xóa
Tran Le Khanh Linh
14 tháng 4 2020 lúc 9:03

Ta có: \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+c+b}\end{cases}\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}}\)

\(\Rightarrow S>\frac{a+b+c}{a+b+c}=1\left(đpcm\right)\)

Khách vãng lai đã xóa