Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu Tsukiyama
Xem chi tiết
Hoàng Bích Diệp
Xem chi tiết
Khôi Cấn
Xem chi tiết
anhduc1501
12 tháng 5 2017 lúc 11:47

\(2\left(n-1\right)^2\ge0=>2\left(n-1\right)^2+3\ge3\\ =>\frac{1}{2\left(n-1\right)^2+3}\le\frac{1}{3}\)

vậy B đạt giá trị lớn nhất bằng \(\frac{1}{3}\) khi \(n-1=0=>n=1\)

Nguyễn Phương Quỳnh Chi
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 7 2021 lúc 20:48

\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)

\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)

\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt

Bài toán thỏa mãn khi: \(x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)

Hải Yến Lê
Xem chi tiết
Kamato Heiji
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết