Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Chứng minh:
a) CH/CB = CK/CD
b) Tam giác CHK đồng dạng với tam giác BCA
c) AB.AH + AH.AK = AC2
Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Cmr
CH/CB=CK/CD
Tam giác CHK đồng dạng tam giác BCA
AB.AH + AD.AK= AC x AC
cho hình bình hành ABCD có AC>BD, gọi H và K lần lượt là hình chiếu vuông góc của C trên AB, AD. chúng minh:
a, CH/CB = CK/CD
b, tam giác CHK đồng dạng BCA
c, AB.AH + AD.AK = AC2
cho hình bình hành ABCD có AC>BD . Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và CD . CM
a, CH.CD=CK.CB
b, tam giác CHK đồng dạng với tam giác BCA
c, AB.AH+AD.AK=AC2
a, BE, DF cùng vuông góc vs AC nên BE//DF
tam giác BEO = tam giác DFO ( cạnh huyền - góc nhọn) (O là gđ 2 đường chéo)
=> BE = FD
từ đó đc tg BEDF là hình bình hành
b, tam giác BHC đồng dạng vs tam giác DKC (g.g)
có góc H = góc k =90 độ
và góc CBH = góc CDK ( vì 2 góc này kề bù vs 2 góc bằng nhau là góc CBA =góc ADC)
=> BC/DC = HC/KC
=>CB.CK = CH.CD
c, tam giác ABE đồng dạng vs tam giác ACH (g.g)
vì có góc E = góc H = 90 độ
và góc A chung
=> AB/AC = AE/AH
=> AB. AH = AC.AE
T]ơng tự ta đc tam giác ADF đồng dạng vs tam giác ACK
=> AD/AC = AF/AK
=> AD. AK = AC.AF
Vậy AB.AH + AD.AK = AC.AE + AC.AF = AC. (AE +AF) = AC .( AE +CE) = AC^2
tự chứng minh AF = CE theo tam giác vuông BEC = tam giác vuông DFA ( cạnh huyền - cạnh góc vuông)
Cho hình bình hành ABCD (AC>BD). Gọi E,F lần lượt là hình chiếu của B, D trên AC, gọi H, K lần lượt là hình chiếu của C trên AB và AD. Chứng minh tam giác CHK đồng dạng với tam giác BCA
Cho hình bình hành ABCD có AC > BD. Gọi H; K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Tia Dx cắt AC, AB, BC lần lượt tại I, M, N. J là điểm đối xứng với D qua I. Chứng minh:
a. \(\frac{CH}{CB}=\frac{CK}{CD}\)
b. Tam giác CHK đồng dạng yam giác BCA
c. AB. AH + AD. AK= AC2
d. IM. IN=ID2
e. \(\frac{JM}{JN}=\frac{DM}{DN}\)
a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC
=> ^CBH = ^CDK.
Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)
=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).
b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)
Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)
BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)
=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)
Từ (1) và (2) => ^ABC = ^KCH
Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).
c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.
Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)
=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)
Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)
=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)
Mà CD=AB nên \(AB.AH=CP.AC\)(4)
Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)
\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).
d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)
Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).
e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.
=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)
Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).
Cho hình bình hành ABCD có AC>BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Chứng minh:
a, CH/CB=CK/CD b, Tam giác CHK đồng dạng với tam giác BCA c, AB.AH + AD.AK = AC^2Ta có:\(a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC => ^CBH = ^CDK. Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g) => \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm). b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\) Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1) BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc) => ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2) Từ (1) và (2) => ^ABC = ^KCH Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm). c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC. Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g) => \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3) Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD) => \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\) Mà CD=AB nên \(AB.AH=CP.AC\)(4) Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\) \(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm). d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD) Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm). e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ. => \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau) \(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales) Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).\)
Cho hình bình hành ABCD có AC giao BD tại 0 , AC> BD . Gọi E,F lần lượt là hình chiếu của B và D trên đường thẳng AC . Gọi H và K lần lượt là hình chiếu của C trên đường thẳng AB và AD .
a\ Chứng minh tam giác BEO đồng dạng với tam giác DFO . Từ đó chứng minh EO = FO
b\ Chứng minh CH.CD = CB.C
mk k bt đâu hưng vlog ạ ối dồi ôi
cái này giống toán 8 chứ k phải toán 9
Cho hình bình hành ABCD có AC giao BD tại 0 , AC> BD . Gọi E,F lần lượt là hình chiếu của B và D trên đường thẳng AC . Gọi H và K lần lượt là hình chiếu của C trên đường thẳng AB và AD .
a\ Chứng minh tam giác BEO đồng dạng với tam giác DFO . Từ đó chứng minh EO = FO
b\ Chứng minh CH.CD = CB.C
Bài 1: Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.
a) Tứ giác BEDF là hình gì? Hãy chứng minh điều đó?
b) Chứng minh rằng: CH . CD = CB . CK
c) Chứng minh rằng: AB . AH + AD . AK = AC2