Cho biểu thức C = x(y+z) - y(z+x) - z(x-y). chọn đáp án đúng *
A: Biểu thức C không phụ thuộc vào x; y; z
B: Biểu thức C phụ thuộc vào cả x; y; z
C: Biểu thức C chỉ phụ thuộc vào y
D: Biểu thức C chỉ phụ thuộc vào z
Bỏ dấu ngoặc biểu thức - [ x - (-y) + (-z)] - (-t)
A. -x -y +z +t
B. -x + y + z -t
C.-x -y -z + t
D.x +y -z -t
làm thế nào để chọn đáp án đúng đây ??????
câu b
nếu muốn biết tại sao thì vào sgk 6 mà tìm
mọi người quên dấu ngoặc vuông rồi. Câu d nhé bạn!
Cho x^2-y=a ; y^2-z=b ;z^2-x=c
(a,b,c là các hằng số cho trước)
CMR :giá trị biểu thức sau không phụ thuộc vào x , y ,z
P=x^3(z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Cho biểu thức C = x(y + z) – y(z + x) – z(x – y). Chọn khẳng định đúng.
A. Biểu thức C không phụ thuộc vào x; y; z
B. Biểu thức C phụ thuộc vào cả x; y; z
C. Biểu thức C chỉ phụ thuộc vào y
D. Biểu thức C chỉ phụ thuộc vào z
Ta có C = x(y + z) – y(z + x) – z(x – y)
= xy + xz – yz – xy – zx + zy
= (xy – xy) + (zy – zy) + (xz – zx) = 0
Nên C không phụ thuộc vào x; y; z
Đáp án cần chọn là: A
x/(x-y)(y-z)-1/(x-z)(y-z)-1/(x-y)(x-z).chứng minh biểu thức 0 phụ thuộc vào x y z
Cho x^2-y=a
y^2-z=b
z^2-x=c
CMR: Giá trị biểu thức sau ko phụ thuộc vào biến
P=x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
CMR: các biểu thức sau ko phụ thuộc vào biến x
z(y-x)+y(z-x)+x(y+z)
z(y-x)+y(z-x)+x(y+z)=\(zy-zx+yz-yx+xy+xz\)
=2yz
Vậy biểu thức: z.(y-x)+y(z-x)+x(y+z) không phụ thuộc vào biến x
=>đpcm
Cho x2-y=a, y2-x=b, z2-x=c (a,b,c là các hằng số). Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến x,y,z .
P= x3(z-y2)+y3(x-z2)+z3(y-x2)+xyz(xyz-1).
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Chứng minh các biểu thức sau không phụ thuộc vào x, y, z
a) x-y/xy + y-z/yz + z-x/zx
b) 1/(x-y) (y-z) - 1/(x-z) (y-z) - 1/(x-y) (x-z)
a,\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)
=\(\dfrac{\left(x-y\right).z}{xyz}+\dfrac{\left(y-z\right).x}{xyz}+\dfrac{\left(z-x\right).y}{xyz}\)
=\(\dfrac{xz-yz}{xyz}+\dfrac{xy-xz}{xyz}+\dfrac{yz-xy}{xyz}\)
=\(\dfrac{xz-yz+xy-xz+yz-xy}{xyz}\)
=\(\dfrac{0}{xyz}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
b,\(\dfrac{1}{\left(x-y\right).\left(y-z\right)}-\dfrac{1}{\left(x-z\right).\left(y-z\right)}-\dfrac{1}{\left(x-y\right).\left(x-z\right)}\)
=\(\dfrac{1.\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\dfrac{\left(x-y\right).1}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{1\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
=\(\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=\(\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
cho \(x^2-y=a;y^2-z=bvoiz^2-x=c\left(a,b,c\right)lahangso\) số
cmr giá trị của biểu thức ko phụ thuộc vào giá trị biểu thức x,y,z
\(p=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3.\left(y-x^2\right)=xyz.\left(xyz-1\right)\)
các bạn làm hộ mình nha