Những câu hỏi liên quan
Phan Hoàng Nam
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
hoangminhkhanh
Xem chi tiết
Như Ý
4 tháng 12 2015 lúc 19:39

bài 5:

Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4

Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3

suy ra p+q chia hêt cho 12

Bình luận (0)
961981
Xem chi tiết
961981
Xem chi tiết
961981
Xem chi tiết
961981
16 tháng 9 2019 lúc 19:58

Các ban giúp mình nha ! Mình đang cần gấp. Bạn nào giải được thì mình k cho 

Bình luận (0)
Nguyễn Thiều Công Thành
Xem chi tiết
Minh Hiếu
Xem chi tiết
Thầy Cao Đô
16 tháng 12 2022 lúc 10:29

Ý thứ hai: Từ giả thiết $p$ nguyên tố suy ra $b$ chẵn (vì $b$ phải chia hết cho $4$), ta đặt $b=2 c$ thì:

$p=\dfrac{c}{2} \sqrt{\dfrac{a-c}{b-c}} \Leftrightarrow \dfrac{4 p^2}{c^2}=\dfrac{a-c}{a+c}$.

Đặt $\dfrac{2 p}{c}=\dfrac{m}{n}$, với $(m, n)=1$ $\Rightarrow\left\{\begin{aligned} &a-c=k m^2 \\ &a+c=k n^2\\ \end{aligned}\right. \Rightarrow 2 c=k\left(n^2-m^2\right)$ và $4 p n=k m\left(n^2-m^2\right).$

+ Nếu $m$, $n$ cùng lẻ thì $4 p n=k m\left(n^2-m^2\right) \, \vdots \, 8 \Rightarrow p$ chẵn, tức là $p=2$.

+ Nếu $m$, $n$ không cùng lẻ thì $m$ chia $4$ dư $2$. (do $2p$ không là số chẵn không chia hết cho $4$ và $\dfrac{2 p}{c}$ là phân số tối giản). Khi đó $n$ là số lẻ nên $n^2-m^2$ là số lẻ nên không chia hết cho $4$ suy ra $k$ là số chia hết cho $2$.

Đặt $k=2 r$ ta có $2 p n=r m\left(n^2-m^2\right)$ mà $\left(n^2-m^2, n\right)=1 \Rightarrow r \, \vdots \, n$ đặt $r=n s$ ta có $2 p=s(n-m)(n+m) m$ do $n-m, n+m$ đều là các số lẻ nên $n+m=p$, $n-m=1$, suy ra $s, m \leq 2$ và $(m ; n)=(1 ; 2)$ hoặc $(2 ; 3)$.

Trong cả hai trường họp đều suy ra $p \leq 5$.

Với $p=5$ thì $m=2$, $n=3$, $s=1$, $r=3$, $k=6$, $c=15$, $b=30$, $a=39$.

Bình luận (1)
Thầy Cao Đô
16 tháng 12 2022 lúc 11:41

Ý thứ nhất: 

TH1: Nếu $p=3$, ta có $3^6-1=2^3 .7 .11 \, \vdots \, q^2$ hay $q^2 \, \big| \, 2^3 .7 .11$ nên $q=2$.

TH2: Nếu $p \neq 3$, ta có $p^2 \, \big| \, (q+1)\left(q^2-q+1\right)$.

Mà $\left(q+1, q^2-q+1\right)=(q+1,3)=1$ hoặc $3$. Suy ra hoặc $p^2  \, \big| \,  q+1$ hoặc $p^2  \, \big| \,  q^2-q+1$ nên $p < q$.

+ Nếu $q=p+1$ ta có $p=2$, $q=3$.

+ Nếu $q \geq p+2$. 

Ta có $p^6-1=(p^3)^2-1=(p^3-1)(p^3+1)$ nên $q^2  \, \big| \, (p-1)(p+1).(p^2-p+1).(p^2+p+1)$.

Do $(q, p+1)=(q, p-1)=1$ và $\left(p^2-p+1, p^2+p+1\right)=\left(p^2+p+1,2 p\right)=1$ nên ta có hoặc $q^2  \, \big| \,  p^2+p+1$ hoặc $q^2  \, \big| \,  p^2-p+1$.

Mà $q \geq p+2$ nên $q^2 \geq(p+2)^2>p^2+p+1>p^2-p+1$.

Vậy $(p, q)=(2,3) ; \, (3,2)$.

Bình luận (1)
đỗ thành dạt
21 tháng 12 2022 lúc 19:42

ko biết làm thế nào bn thông cảm nhégianroigianroi

Bình luận (0)
Nguyễn Tuấn Minh
Xem chi tiết
bùi ngọc minh trang
11 tháng 3 2017 lúc 19:55

dài thế ai mà làm được

Bình luận (0)
sakura
5 tháng 4 2017 lúc 17:33
ai tk mk thì mk tk lại
Bình luận (0)
miu cooki
Xem chi tiết
Tran Le Khanh Linh
3 tháng 3 2020 lúc 19:59

Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)

Khi đó r > 3 nên r là số lẻ

=> p.q không cùng tính chẵn lẻ

Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)

Nếu q không chia hết cho 3 thì q^2 =1 (mod3)

Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)

Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)

Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố

Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17

Bình luận (0)
 Khách vãng lai đã xóa