Cho a,b,c là các số dương thoả mãn 4x2+y=1
Tìm GTLN và GTNN của M=\(\dfrac{2x+3y}{2x+y+2}\)
Cho x,y là các số thực thõa thoả mãn 4x2+y2=1
Tìm GTLN và GTNN của M=\(\dfrac{2x+3y}{2x+y+2}\)
Do \(4x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=\dfrac{sina}{2}\\y=cosa\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{sina+3cosa}{sina+cosa+2}\Leftrightarrow M.sina+M.cosa+2M=sina+3cosa\)
\(\Leftrightarrow\left(M-1\right)sina+\left(M-3\right)cosa=-2M\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(M-1\right)^2+\left(M-3\right)^2\ge\left(-2M\right)^2\)
\(\Leftrightarrow2M^2+8M-10\le0\)
\(\Leftrightarrow-5\le M\le1\)
\(\Rightarrow\left\{{}\begin{matrix}M_{min}=-5\\M_{max}=1\end{matrix}\right.\)
cho x,y,z là các số dương thoả mãn \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\)=6
Chứng minh \(\dfrac{1}{3x+3y+2z}+\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\)≤\(\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Cho x và y thoả mãn \(\hept{\begin{cases}x,y\ge0\\2x+y\le4\\2x+3y\le6\end{cases}}\).Tìm GTNN,GTLN của A=x2-2x-y.
Giúp mik với mai nạp rồi.Thanks trước.
Cho x, y, z là các số thực thoả mãn điều kiện \(\dfrac{3x^2}{2}\)+ y2 + z2 +yz = 1. Tìm GTNN và GTLN của biểu thức A = x + y + z
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)
Cho x ; y là các số thực thỏa mãn : 4x^2 + y^2 = 1 Tìm GTLN ; GTNN của bt A = \(\frac{2x+3y}{2x+y+2}\)
A = \(\frac{2x+3y}{2x+y+2}\)
<=> A(2x + y + 2) = 2x + 3y
<=> 2x.A + y.A + 2.A = 2x + 3y
<=> 2x(1 - A) + (3 - A).y = 2.A
Áp dụng BĐT Bunhia côp xki ta có: [2x.(1 - A) + ( 3 - A).y]2 < (4x2 + y2) .[(1 - A)2 + (3 - A)2]
=> (2.A)2 < 2A2 -8A + 10
<=> - 2A2 - 8A + 10 > 0
<=> A2 + 4A - 5 < 0
<=> (A - 1).(A + 5) < 0 <=> -5 < A < 1
Vậy Min A = -5 . giải hệ -5 = \(\frac{2x+3y}{2x+y+2}\); 4x2 + y2 = 1 => x ; y
Max A = 1 tại....
Cho các số thực x, y, z thoả mãn \(2x^2+3y^2+4z^2=5\). Tìm GTLN, GTNN của các biểu thứuc:
a) A= x+y+z
b) B=2x+3y+4z
. Với x,y,z là các số thực dương thỏa mãn\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\).Tìm GTNN và GTLN của
Q=\(\dfrac{2x+z}{2z+x}\)
Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
Cho x,y là các số thực dương bất kì thoả mãn điều kiệu x+y=1
Tìm GTNN của biểu thức A=2X*2-y*2+x+1\x+1
Cho x,y,z là các số dương thỏa mãn: \(x+y\ge10\). Tìm GTNN của \(A=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
<=> A = (x+y) + ( 5/x + 5/y) +( 25/x + x)
Xét:
+) x+y >/ 10
+) 5/x + 5/y = 5(1/x+1/y) >/ 5.4/x+y = 2 <=> x=y
+) 25/x + x >/ 2. căn 25/x.x =10
=> A >/ 10+2+10 = 22 <=> (x;y)= (5;5).
\(A=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}+\dfrac{4}{5}.10=22\)
\(A_{min}=22\) khi \(x=y=5\)