Cho b =\(\frac{5}{\sqrt{x-1}}\)
tìm x thuộc Z để b nhận gt nguyên
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
B=\(\frac{5}{\sqrt{x}-1}\). Tìm x thuộc Z để B có GT nguyên
để B nguyên thì ta có
5 chia hết cho \(\sqrt{x}-1\)
=> \(\sqrt{x}-1\inƯ_{\left(5\right)}=\left(1;-1;5;-5\right)\)
ta có bảng sau :
\(\sqrt{x}-1\) | - 1 | 1 | -5 | 5 |
\(\sqrt{x}\) | 0 | 2 | -4 | 6 |
\(x\) | 0 | 4 | loại | 36 |
vậy x = { 0; 4; 36 }
Tính B=\(\frac{1}{2-1}\). \(\frac{1}{3-1}\).\(\frac{1}{4-1}\)....\(\frac{1}{2010-1}\).\(\frac{1}{2011-1}\)
a, Với x >= 0 ; x khác 4
\(=\frac{x-3\sqrt{x}+2-\left(x+4\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3\sqrt{x}-3-x-4\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-7\sqrt{x}-6-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}-6}{\sqrt{x}-2}\)
b, \(Q+1>0\Leftrightarrow\frac{-\sqrt{x}-6+\sqrt{x}-2}{\sqrt{x}-2}>0\Leftrightarrow\frac{-8}{\sqrt{x}-2}>0\)
\(\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\Rightarrow0\le x< 4\)
c, \(\frac{-\left(\sqrt{x}+6\right)}{\sqrt{x}-2}=\frac{-\left(\sqrt{x}-2+8\right)}{\sqrt{x}-2}=-1-\frac{8}{\sqrt{x}-2}\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\sqrt{x}-2\) | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
x | 1 | 9 | 0 | 16 | loại | 36 | loại | 100 |
Cho \(A=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{1-\frac{2}{x}+\frac{1}{x^2}}}\)
a) Rút gọn A
b) Tìm x thuộc Z , x>2 để A nguyên
cho B= \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a,xác định x để B có nghĩa
b,rút gọn B
c,tìm x để B>1
d,tìm x để B thuộc Z
A= \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-6\sqrt{5}+5}{2x+7\sqrt{x}-4}\)
a) Tìm TXĐ của A
b) Rút gọn A
c) Tìm x để A >\(\frac{1}{2}\)
d) Tìm x thuộc Z để A thuộc Z
đè hinh như là 6\(\sqrt{x}\) nhi bạn
cho A = \(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)ĐK: x > 0, x khác 9
a, rút gọn A
b, Tìm x thuộc Z để A thuộc Z
c, Tìm x để A >1/3
cho A = \(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)ĐK: x > 0, x khác 9
a, rút gọn A
b, Tìm x thuộc Z để A thuộc Z
c, Tìm x để A >1/3
a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
c) để A>1/3
\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)
\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)
\(\Rightarrow\sqrt{x}+3>3\)
\(\Rightarrow x>0\)
Cho biểu thức B = \((\frac{1}{\sqrt{x}}-\frac{2}{\sqrt{x}+2}).\frac{x-\sqrt{x}}{\sqrt{x}-1}\)
a/ Tìm x để B có nghĩa.
b/ Rút gọn B.
c/ Tìm x để B > 0.
d/ Tìm x nguyên để B nhận giá trị nguyên.