\(\sqrt{x+1}+\sqrt{5-x}=\sqrt{m+4x-x^2}\)
Tìm m để pt có nghiệm .
Cho PT:
\(\left(m-4\right)x^2-2mx+m-2=0\)
a) Tìm m để PT có nghiệm \(x=\sqrt{2}\)
b) Tìm m để PT có nghiệm kép. Tìm nghiệm kép đó
c) Tìm m để PT có 2 nghiệm phân biệt
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
Cho pt \(x^2-2mx+m^2-2m=0\) . Tìm m để pt có 2 nghiệm thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=3\)
có ai chơi minecraft bedwar sever 3fmc.com ko chơi thì kb nha tui là Bluebood_VN
pt \(x^2-2mx+m^2-2m=0\) có \(\Delta'=\left(-m\right)^2-\left(m^2-2m\right)=2m\)
Để pt có hai nghiệm phân biệt x1, x2 thì \(\Delta'>0\)\(\Leftrightarrow\)\(m>0\)
Ta có : \(\sqrt{x_1}+\sqrt{x_2}=3\)\(\Leftrightarrow\)\(x_1+x_2+2\sqrt{x_1x_2}=9\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-2m\end{cases}}\)
(*) \(\Leftrightarrow\)\(2m+2\sqrt{m^2-2m}=9\)
\(\Leftrightarrow\)\(4\left(m^2-2m\right)=\left(9-2m\right)^2\)
\(\Leftrightarrow\)\(4m^2-8m=81-36m+4m^2\)
\(\Leftrightarrow\)\(28m=81\)
\(\Leftrightarrow\)\(m=\frac{81}{28}\) ( tm )
...
1, Cho bt \(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
a,rút gọn M
b,tìm x để\(M=\sqrt{x}\)
c, tìm các số tự nhiên x để gtri của M là số tự nhiên
2,Cho hpt : \(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
a,Giải hệ khi M=2
b,tìm m để pt có nghiệm\(\left(x,y\right)=\left(2,-1\right)\)
Giúp mình nhanh nhé
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
Cho pt bậc hai với m là tham số:
x2-2x+m=0
Tìm m để pt có nghiệm
Tìm m để pt có 2 nghiệm x1,x2 thoả mãn x1- 2x2=5
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
Tìm các giá trị của m để phương trình sau có nghiệm :
\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\) .
ĐKXĐ:...
\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\)
\(\Leftrightarrow2x^2+mx-4x+3-x^2+4x-4=0\)
\(\Leftrightarrow x^2+mx-1=0\)
\(\Leftrightarrow.....\)
Bài 1: cho pt: x^2 -mx+m-2=0
a) tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^2+x2^2=7
b)tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^3+x2^3=18
bài 2: cho pt x^2 -2mx+m^2- 4=0
tìm m để pt đã cho có 2 nghiệm phân biệt:
a) x2=2x1 b) 3x1+2x2=7
Bài 1; a, Biết rằng pt \(^{x^2-2\left(m-1\right)x+m^2-2=0}\)có 1 nghiệm x=1 . Tìm nghiệm còm lại của pt này.
b, Giai pt và hpt 1, \(3x^2-5x+2=0\)
2,\(\hept{\begin{cases}-2x+y=-7\\5x-y=16\end{cases}}\)
Bài 2: Cho P=\(\left(\frac{x+2}{\sqrt{x}+1}-\sqrt{x}\right):\left(\frac{\sqrt{x}-4}{1-x}-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)P=\(\frac{x+2-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
a, Rút Gọn P b, Tính P khi \(x=4+2\sqrt{3}\) c,Tìm x để P <\(\frac{1}{2}\)
cho pt: (m-1)\(x^2\)+2(m-1)x-m=0 Tìm m để pt có 2 nghiệm phân biệt đều âm
- Với \(m=1\) pt vô nghiệm (ktm)
- Với \(m\ne1\) pt có 2 nghiệm pb đều âm khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+m\left(m-1\right)>0\\x_1+x_2=-2< 0\left(luôn-đúng\right)\\x_1x_2=\dfrac{-m}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(2m-1\right)>0\\\dfrac{m}{m-1}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< \dfrac{1}{2}\end{matrix}\right.\\0< m< 1\end{matrix}\right.\) \(\Rightarrow0< m< \dfrac{1}{2}\)
Tìm tất cả các giá trị m để bất phương trình \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\)có nghiệm trên \(\left[0;2\right]\)