CM: số 111...122...2 (số chữ số 1 bằng số chữ số 2) là tích của 2 số tự nhiên liên tiếp
CMR: 11...122...2 (n chữ số 1, n chữ số 2) là tích của 2 số tự nhiên liên tiếp.
Ta có: 11…122…2=11…100…0+22…2(n chữ số 1, n chữ số 2, n chữ số 0)
=11…1.10…0+11…1.2
=11…1.10n+11…1.2
=11…1.(10n+2)
=(10…0+1).(10n+2)
=(10n+1).(10n+2)
Vì 10n+1 và 10n+2 là 2 số tự nhiên liên tiếp.
=> 11…12…2 là tích của 2 số tự nhiên liên tiếp.
111...122...2 = 111..100..0 + 22...2= 11...1 x 100...0(n số 0) + 111...1 x 2 = 11...1 x 100...2 = 111...1 x (99..9(n số 9) + 3)
=111...1 x (33...3 x 3 +3) = 11...1 x (333...4 x 3) = 33...3(n số 3) x 33...34 là tích của 2 số tự nhiên liên tiếp.
chứng minh rằng số :11....122....2 ( 100 chữ số 1 và tiếp theo là 100 chữ số 2) là tích của 2 số tự nhiên liên tiếp
CHỨNG MINH RẰNG A= 111...1(n CHỮ SỐ 1)222...2(n CHỮ SỐ 2) LÀ TÍCH CỦA 2 SỐ TỰ NHIÊN LIÊN TIẾP ?
bn ơi mình chưa
biết làm bài này những
mình nghĩ là
586
đó bn ạ
CMR số:11....122....2(có 2n chữ số gồm n chứ số 1 và n chữ số 2) là tích của 2 số tự nhiên liên tiếp
CMR số 111...11( 100 chữ số 1) 222... 22 ( 100 chữ số 2) là tích của 2 số tự nhiên liên tiếp
CMR: B=111...111222...22(có n chữ số 1: và n chữ số 2) là tích của 2 số tự nhiên liên tiếp
B = 11...100..00 + 22...22 (có n số 1; n số 0 và n số 2)
= 11..1 . 10n + 2. 11...1 (có n số 1)
= 11..1 . (10n + 2) (1)
Đặt 11..1 = k => 9k = 99...9 => 9k + 1 = 100...00 = 10n
Thay vào (1) ta được B = k. (9k + 1 + 2) = k. (9k +3) = 3k.(3k +1)
Vì 3k; 3k +1 là 2 số tự nhiên liên tiếp => đpcm
Chứng minh rằng A= 111...11 ( n chữ số 1 ) 222...2 (n chữ số 2 ) là tích của 2 số tự nhiên liên tiếp
Câu hỏi của Nguyễn Thị Giang - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
b) Chứng tỏ rằng: B = 111...1222...2 ( có n chữ số 1, n chữ số 2 và \(n\inℕ^∗\)) là tích của 2 số tự nhiên liên tiếp
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
a, 3024 chia hết cho cả 2 và 3 ==> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
==> 3024 = 7 x 2 x 6 x 6 x 6 = 6 x 7 x 2 x 6 x 6 = 6 x 7 x 8 x 9
b, 111...1222...2
= 111...1. 10^n + 222...2
= 111...1. 10^n + 2. 111...1 (n chữ số 1)
= 111...1.(10^n + 2) (n chữ số 1)
Nhận xét:
10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
Đặt a = 111...1
=> 111...1222...2
= a.(9a +1 + 2)
= a.(9a+ 3) = 3a(3a + 1) hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
Chứng tỏ rằng số sau là tích của 2 số tự nhiên liên tiếp:111...1222...2(với 2012 chữ số 1 và 2012 chữ số 2
Gọi 11...1(2012 c/s 1) là x.
Ta có:11...122...2
=11...100...0+22...2
=11...1.100...0+22...2
=11....1.(99...9+1)+111...1.2
=x(9x+1)+2x
=9x2+x+2x
=9x2+3x
=(3x)2+3x
=3x.3x+3x
=3x.(3x+1)
=>11...122...2 là tích của hai số tự nhiên liên tiếp.
Vậy 11...122...2 là tích của hai số tự nhiên liên tiếp.
11...122...2 ( n số 1; n số 2)
=111....1(n chữ số 1) 00...00(n chữ số 0) + 22...2(n chữ số 2)
=111...1(n chữ số 1) . 100...0(n chữ số 0) +111...1(n chữ số 1) . 2
=11....1(n chữ số 1) (1000....0(n chữ số 0) + 2)
=111....1(n chữ số 1) . 100...02(n-1 chữ số 0)
=11...1 . 3 ( n chữ số 1) . 33...34(n-1 chữ số 3)
=333...3( n chữ số 3) . 33...34(n-1 chữ số 3)
Vậy ..........