cho đa thức f(x) có hệ số nguyên. Biết rằng f(1).f(2)=35. CMR f(x) không có nghiệm nguyên
Đa thức f(x) có các hệ số nguyên. Biết rằng f(1).f(2)=2017. CMR f(x) không có nghiệm nguyên
Cho đa thức f(x) có hệ số nguyên biết f(0) , f(1) là các số lẻ . CMR đa thức f(x) không có nghiệm nguyên .
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~
Nhận xét: với a, b nguyên , n nguyên dương ta có:
aⁿ và a cùng tính chẳn, lẻ ;
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ
và do đó, với x là số lẻ ta có:
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có:
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c
- - - - - -
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d
có f(0) = d lẻ (do giả thiết)
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn
với x nguyên tuỳ ý ta có hai trường hợp:
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ)
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn)
=> f(x) lẻ
Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên
=> f(x) không có nghiệm nguyên
~~~~~~~~~~~~
Cho đa thức f(x) có các hệ số nguyên. Biết f(!) . f(2) = 2013
CMR: Đa thức f(x) không có nghiệm nguyên
Cho đa thức f(x) có các hệ số nguyên. Biết f(1).f(2)=2013. Chứng minh rằng đa thức f(x) không có nghiệm nguyên
Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)
=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)
Hay 2013=(a−1)(a−2).Q(1)Q(2)
Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )
=> PT vô nghiệm
=> f(x) không có nghiệm nguyên
Tìm cặp số x nguyên và y nguyên thoả mãn :
a) 3xy + x - y = 2
b) 6xy - 2y + x = 14
Cho đa thức f(x) có các hệ số nguyên. Biết rằng f(1). f(2) = 35. Chứng minh rằng đa thức f(x) không có nghiệm nguyên
Giúp mình nhé
Cho đa thức f(x) có các hệ số nguyên. Biết f(1) và f(2) là các số lẻ. Chứng minh rằng f(x) không có nghiệm nguyên.
Cho đa thức f x có các hệ số nguyên. Biết f 1 và f 2 là các số lẻ. Chứng minh rằng f x không có nghiệm nguyên.
Giả sử \(f\left(x\right)\)có nghiệm nguyên là \(a\).
Khi đó \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)(với \(g\left(x\right)\)là đa thức với các hệ số nguyên)
\(f\left(1\right)=\left(1-a\right)g\left(1\right)\)là số lẻ nên \(1-a\)là số lẻ suy ra \(a\)chẵn.
\(f\left(2\right)=\left(2-a\right)g\left(2\right)\)là số lẻ nên \(2-a\)là số lẻ suy ra \(a\)lẻ.
Mâu thuẫn.
Do đó \(f\left(x\right)\)không có nghiệm nguyên.
Cho đa thức f x có các hệ số nguyên. Biết f 1 và f 2 là các số lẻ. Chứng minh rằng f (x) không có nghiệm nguyên.
Giả sử F(x) là 1 đa thức với hệ số nguyên và không có số nào trong các số F(0), F(2), ... , F(2015) chia hết cho 2016. CMR: ĐA thức F(x) không có nghiệm nguyên
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
cho đa thức với hệ số nguyên f (n ) có f (1 ) là 2 số lẻ . chứng minh rằng f ( x ) không có nghiệm nguyên.